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Figure 1: An example on coin problem.

Abstract

This study explores the feasibility of modeling higher-order human
beliefs using a generalizable formalization based on the epistemic
planning framework, the Justified Perspective (JP) model. Specifi-
cally, it investigates (a) whether individuals exhibit consistent belief
reasoning abilities and (b) whether these abilities can be inferred
from their nesting capabilities within the JP model framework. To
address these questions, we propose a novel processing algorithm
inspired by Item Response Theory to estimate reasoning abilities
based on participants’ responses to diverse reasoning scenarios.
A pilot experiment was conducted to validate the methodology
and refine the experimental design for future studies. While the
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small sample size limits the statistical significance of the findings,
preliminary results suggest the JP model’s potential to capture hu-
man higher-order beliefs. This work demonstrates the promise of
integrating epistemic planning frameworks with human-centered
applications, advancing the development of Human Computer In-
teraction systems capable of understanding and anticipating human
cognition.
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1 Introduction

Over the past few decades, the development of robotics technologies
has broadly expanded human-robot interaction across various appli-
cations, such as social robots [22, 30], collaborative supernumerary
limbs [27], prosthetics [31], and rehabilitation devices [29]. How-
ever, much of the current interaction relies on external measure-
ments (e.g. physiological data [6]) rather than achieving a deeper
cognitive understanding. With cognitive understanding, it becomes
possible to capture underlying mechanisms and predict human
behavior. Thus, effectively understanding human reasoning be-
comes a key challenge in enhancing both performance and safety
in human-robot interactions.

Consider a simple scenario where robot a and human b are
observing a coin ¢ placed in a box. The coin has two possible states:
“head” and “tail”. The robot or human can only know the state of
the coin if they actively peek into the box. Additionally, they can
see if the other is peeking. Their actions include “peek”, “return”
and “flip”. The flip action and its outcome are only visible to the
one currently peeking, while the one not peeking remains unaware.
An example is shown in Figure 1. Initially, neither the robot nor the
human has peeked, and the coin is in the “head” state. The robot
peeks first and then returns. Subsequently, the human peeks and
observes the coin flip. As a result, the robot forms a false belief about
the coin’s state. Specifically, in the final state, the coin is actually
“tail”, the human believes it is “tail”, the robot believes it is “head”,
and the human believes that the robot believes it is “head”. This
difference in beliefs arises from the complex interaction between
belief and observation, and was known as nested high-order belief.
For example, a second-order belief usually represents the cognition
on others’ beliefs about their own beliefs [9, 24]. Modeling how
humans form these beliefs, especially when involving nested beliefs,
remains a significant challenge in human-robot interaction [3, 10,
28, 33].

Building on this complexity, the Theory of Mind (ToM) studies
examine the cognitive ability to infer the beliefs, intentions, and
emotions of others from their actions or social signals. A classic and
widely recognized example in this field is the study by Baron-Cohen
et al. [1], which introduced the “Sally-Anne” task. This seminal ex-
periment demonstrated that children with autism have distinct
challenges with ToM, specifically in recognizing and understanding
the beliefs and intentions of others. In the context of artificial intelli-
gence (Al), ToM provides a framework for predicting and explaining
agents’ behavior. Current ToM research in Al focuses on compu-
tational models for multi-robot simulations and decision-making
inference. For example, Winfield and Jirotka [28] examined how
robots infer human belief states for autonomous decision-making,
and Zhao et al. [33] combined probabilistic programming with sym-
bolic inference to analyze human beliefs from videos. However,
these methods lack validation through comprehensive human ex-
periments, limiting real-world application. Similarly, Buehler and
Weisswange [3] modeled the human as rational agent acting in
partially observable Markov decision process in simulations, but
such settings do not fully capture natural human cognition. Gurney
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and Pynadath [10] highlighted the need for unified frameworks and
benchmarking in ToM models to better align with human reasoning.
Additionally, Rabinowitz et al. [23]’s learning-based ToM model
showed potential in game theory for mimicking human strategic
reasoning, yet its applicability remains confined to simulations. The
existing body of work suggests that ToM models can handle specific
belief reasoning and decision-making tasks; however, their capacity
to generalize across different scenarios remains limited.

To address this gap, a systematic formalization dealing with
knowledge and beliefs of an agent (either a robot or a human) was
proposed and is known as epistemic planning (EP) [2]. EP combines
epistemic logic with automatic planning, allowing agents to antici-
pate and respond to the knowledge and beliefs of other agents. For
instance, Hansen and Bolander [11] used it to enable humanoid
robots to perform ToM reasoning by updating first- and higher-
order beliefs. Similarly, Shvo et al. [26] integrated EP with ToM
to improve human-robot interaction by predicting human beliefs
and resolving discrepancies. In another example, Shekhar et al. [25]
proposed a human-aware task planning framework to predict and
adjust belief divergences in human-robot collaboration. An innova-
tive EP approach employs the Justified Perspective (JP) Model [12]
for analyzing an agent’s epistemic logic, drawing inspiration from
two intuitions of human reasoning: human believes what they see;
and, for the parts they could not see, human believes what they
have seen in the past unless they saw evidence to suggest otherwise.
However, these studies lack experiments involving human subjects
and higher-order beliefs, which may limit the applicability of their
findings to real-world human behaviors and responses.

This pilot study is designed to explore the feasibility of using the
JP model to understand higher-order human beliefs. It is important
to note that we do not seek to demonstrate that human belief
reasoning operates through the same mechanism as the JP model.
Rather, we aim to show that the JP model can serve as a useful tool
for understanding human belief reasoning across different scenarios.
To this end, we developed a series of belief reasoning questions
to verify (a) whether the reasoning ability quantified under the JP
model framework is consistent, and (b) whether belief reasoning
ability directly results from nesting ability as suggested in the JP
model. While no definitive conclusions can be drawn due to the
limited sample size (5 subjects), our preliminary findings indicate
that humans exhibit consistent reasoning ability, with a positive
correlation observed between nesting ability and reasoning ability.
These results suggest the JP model’s potential to effectively capture
human higher-order beliefs.

To summarize, the key contributions of this work are as follows:
First, we propose an experimental paradigm and a novel processing
algorithm, inspired by Item Response Theory (IRT), to measure
individuals’ belief reasoning abilities under the JP model framework.
Second, we conduct a pilot study to validate the proposed paradigm,
with preliminary results suggesting that the JP model can be utilized
to understand human belief reasoning across different scenarios.
Finally, we identify the limitations of the current pilot study and
provide insights for refining future research.
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Figure 2: An example of the nesting test (A detailed analysis of this example, along with the belief reasoning results generated

from the JP model, can be found in the Appendix A).

2 Methodology

This experiment serves as a pilot study to evaluate the feasibility
of the methodology and aims to refine it for subsequent large-
scale experiments. A total of five participants were involved in this
experiment.

To improve readability, we first define a few key preliminaries.
The belief of Agent i on the number N is represented as B;N in the
following sections. Nesting ability refers to the depth of belief about
others’ beliefs (arbitrary nesting) that an individual can understand
and infer in an omniscient setting (e.g., without memory limita-
tions). Reasoning ability refers to the depth of belief about others’
beliefs (arbitrary nesting) that an individual can understand and
infer based on available evidence, considering limited information,
cognitive load, and other constraints in a specific context. As such,
reasoning ability offers a more practical reflection of human belief
reasoning in real-world scenarios. For simplicity, this pilot study
focuses solely on investigating reasoning ability under memory
load.

To investigate the feasibility of using the JP model to antici-
pate higher-order human beliefs, we will test the following two
hypotheses within the JP model framework: (a) reasoning ability
of individuals is consistent across various scenarios; and, (b)
human belief reasoning abilities are positively correlated to
their nesting abilities.

2.1 Task

The experiment was structured as a computerized test to evaluate
the memory, nesting, and reasoning abilities of the participants.
Each participant was individually seated in front of a monitor and
presented with a scenario involving two robots, a and b, illustrated
in Figure 2. These robots could navigate freely among three rooms:
Room 1, Room 2, and Room 3. In Room 2, a board presented a two-
digit number which either robot could modify. Rooms 1 and 3 each
had a monitor showing the occupation of another room. For exam-
ple, in state 0 (so), Robot a is in Room 1, and Robot b is in Room 3
with the board in Room 2 displaying the number “11”. Robot a can
see that Robot b is in Room 3, while Robot b knows Room 2 is
empty and thus infers that Robot a is in Room 1. Before testing,
participants were thoroughly briefed on the action sequences and
setup to ensure comprehension.

As shown below, the test comprised eight questions, designed
based on the cognitive limit of four nesting levels as suggested by
the literature [5], using all questions for each level (e.g., 2 for 2
robots) to comprehensively assess this cognitive function. Ques-
tions were formatted to evaluate the participants’ understanding
of nested beliefs, such as B; By, N represents Robot a’s belief about

Robot b’s belief regarding the number N. The answers to each
question were determined using the JP model at the corresponding
nesting level, and participants’ responses were compared to these
answers to assess their nesting abilities.

Level 1: B4N =?, B,N =?

Level 2: B4B,N =?, By B;N =?

Level 3: ByByBaN =?, B,ByB,N =?

Level 4: B4BpByBp N =?, ByBqBpByN =?

2.2 Protocol

Given the requirement for reasoning ability, which involves gener-
ating beliefs based on limited information, this experiment necessi-
tates participants’ capability to remember three two-digit numbers.
Therefore, a memory test is conducted during the preliminary phase
to screen valid subjects. Following this, a nesting test and a rea-
soning test are sequentially conducted in Phase 1 and Phase 2,
respectively, to assess the hypotheses.

2.2.1 Pre-phase: Memory Test. In the memory test, subjects are
presented with sequences of two-digit numbers displayed one at
a time on the screen. After each sequence, participants must type
the numbers in the correct order. The sequence length is adjusted
using an adaptive design [16]: it increases by one after a correct
response and decreases by one following an incorrect response.
This process continues until the participant accurately recalls se-
quences of the same length three consecutive times, determining
their maximum recall capacity. Participants who successfully recall
more than three numbers qualify for subsequent tests. Based on
the pioneer literature on human memory ability (4 + 1 theory) [4],
the initial sequence consists of four numbers.

2.2.2  Phase 1: Nesting Test. The nesting test begins with a demon-
stration designed to familiarize participants with the concept of
nesting, the interface, and the notation B; N, using the coin example
as shown in Figure 1. The demonstration includes three scenarios,
each featuring different action sequences. After the initial famil-
iarization, as outlined in Section 2.1, the nesting test is conducted
with a scenario encompassing four states illustrated in Figure 2. In
this test, the two-digit numbers on the board in Room 2 are ran-
domly generated before the experiment and the same for different
participants.

2.2.3  Phase 2: Reasoning Test. Augmenting the nesting test with
limited information, the reasoning test requires the subjects to
remember previously displayed numbers, making it more reflective
of real-world scenarios and human reasoning processes. In this
test, the two-digit number on the board in Room 2 in the previous
state disappeared when a new state was introduced. For example, as
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Figure 3: An example of reasoning test.

illustrated in Figure 3, when ss is displayed, the number on the board
in s4 disappeared. In the reasoning test, only the numbers need to
be memorized, as the action sequence remains visible throughout
the trial to control for distracting factors.

The reasoning test includes four different scenarios. Each sce-
nario in the experiment consists of nine states, starting from state 0
(s0) to state 8 (sg). Each scenario is structured into seven trials that
progressively reveal the states to the participants. In Trial 1, sp to
sz are displayed simultaneously. Trial 2 then extends the display to
include State 3, showing sy to s3 together. Subsequent trials con-
tinue this pattern of adding one state per trial, so that by Trial 3,
States 0 to 4 are displayed, continuing until Trial 7, which displays
all states from 0 to 8.

In each of these trials, participants need to answer eight questions
that test their understanding and reasoning based on the currently
displayed states, as introduced in Section 2.1. The two-digit numbers
are randomly generated before the experiment and are different in
each scenario, yet consistent across different participants. The first
four states in the first scenario are the same as those in the nesting
test to validate the efficacy of the test, and the second scenario
changes the action sequences of the robots from the first trial. The
third scenario differs from the first scenario with different seeing
rules (the information on the monitor in Room 1 and 3), and the
fourth scenario differs from the first scenario with both action
sequences and seeing rules.

2.3 Data Analysis

The binary responses, indicating whether each answer is correct or
not (i.e. consistent with the answer generated from the JP model),
are recorded for all questions from both tests. In the nesting test,
each subject answers 8 questions, while in the reasoning test, each
subject answers 56 questions in each scenario; therefore, 224 ques-
tions in total.

2.3.1 Nesting Test. A participant’s nesting ability is evaluated
based on their consistent ability to answer questions correctly at
the assessed level and all preceding levels. In other words, to be
classified as possessing a specific level of nesting ability, a partic-
ipant must answer all questions correctly at that level and at all
lower levels.

2.3.2 Reasoning Test. As the reasoning test requires subjects to
remember numbers, there is potential noise from guessing or errors.
To analyze this noisy data, Item Response Theory (IRT) [7], a prob-
abilistic model that describes the relationship between a subject’s
latent ability (f) and their test item responses, was employed. In
this study, reasoning ability is estimated using the two-parameter
logistic model (2PL) of the IRT, defined as P(x|6, a,b) = m.
Here, x is the subject’s response to the question, and 1 for correct,
0 for incorrect; P(x|6, a, b) represents the probability of a subject
correctly/incorrectly answering an item; 6 denotes the subject’s
reasoning ability inferred from the test, constrained to 0 < 6 < 4;
a is the discrimination parameter of the item, set to 1 to indicate
uniform discrimination, meaning each item is considered equally
effective at distinguishing between different levels of subject abil-
ity; b is the difficulty parameter, aligned with the nesting levels of
questions in the reasoning test and set at b = 1,2, 3, 4 for levels 1
through 4, respectively.

To estimate the reasoning ability (6) of each subject, the Max-
imum Likelihood Estimation (MLE) method is used. The likeli-
hood function for a subject’s responses is calculated as L(0) =
[T, P(xil6, ai, bi)* (1 — P(x;6, a;, b;))1=*i, where n is the total
number of questions. In this experiment, there are 56 questions in
each scenario. The reasoning ability 0 is estimated by maximizing
the likelihood function: 6 = arg maxg L(0). In this experiment, 6 is
calculated in each scenario j, denoted 2 ; for each subject.

3 Preliminary Results

Potential statistical analysis methods for future human experiments
are discussed in Section 4.4.

The results of the pre-phase (memory test) are shown in the
second column in Table 1. All participants had a memory span
of three to five numbers, supporting the 4 + 1 theory of short-
term memory in [4]. Some participants were observed to be able to
remember all the numbers but struggled to recall them in the right
order. This suggests that retrieval can be challenging even when
memory capacity is enough.

The results of the nesting test are shown in the third column
in Table 1 and the results agreed with the cognitive limit of four
nesting levels from the literature [5]. The preliminary results of
the reasoning test are shown in the last five columns in Table 1.



Modeling Higher-order Human Beliefs Using the Justified Perspective Model

Table 1: Preliminary results in memory test, nesting test, and
reasoning test.

Memory Nesting Reasoning test
Subject  test test él éz ég é4 Variance
Subject 1 4 2 244 245 244 246 0.0001
Subject 2 5 3 3.00 3.00 3.00 3.00 0.0000
Subject 3 4 3 294 296 3.00 3.00 0.0009
Subject 4 3 2 2.54 256 254 257 0.0002
Subject 5 4 3 2.88 286 3.00 3.00 0.0057

The average variance among the five participants in the reasoning
test was 0.0014, which is notably smaller than the total variance
of all 6 values (0.0556). This suggests that individual reasoning
ability remains consistent across scenarios within the JP framework
(Hypothesis a). Additionally, participants with a nesting ability
assessed at level 3 outperformed those with a nesting ability at
level 2 in the reasoning test. This indicates a positive correlation
between belief reasoning ability and nesting ability (Hypothesis
b).

4 Discussion

This pilot study aimed to explore the feasibility of using the JP model
to understand higher-order human belief reasoning. Although the
small sample size and other limitations prevent definitive conclu-
sions, the preliminary results suggest that human reasoning ability
is consistent within the JP model framework, and that a positive
correlation exists between reasoning ability and nesting ability, as
proposed by the model. In this section, we discuss the limitations
of the current study and outline directions for future research.

4.1 Scenario Design

In epistemic planning, it is important to test the generalization of
the approach on diverse domains. In the current reasoning test, al-
though four scenarios were developed with changes to seeing rules
and action sequences in the reasoning test, they are still within
the same “Number” domain [18]. This limitation may reduce the
practical relevance of our findings and their applicability to real-
world contexts. Additionally, similar scenarios could induce more
pronounced learning effects, and participants may develop task-
specific strategies that do not reflect general reasoning abilities,
further diminishing the reliability of the results. In subsequent
experiments, the scenarios in the “Number” domain should be ex-
panded to include more numbers of agents, rooms, and different
seeing rules to enhance generalizability. Furthermore, introducing
new domains such as “Corridor” [15] and “Grapevine” [20] would
enhance the diversity of the experimental conditions. In the Corri-
dor domain, robots are able to share knowledge with nearby robots,
while in the Grapevine domain, they can share or distort their be-
liefs. These scenarios introduce additional complexity and could
be more effective in differentiating participants’ reasoning abilities
across a broader range of contexts.

The single-trial design of the nesting test shares similar issues
with the reasoning test, reducing its reliability and robustness in
identifying meaningful nesting ability. To improve the nesting test,
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future experiments could incorporate diverse domains and tasks
across multiple scenarios, as outlined above.

4.2 Participant Engagement

The current task lacks reward and/or feedback, and the inclusion of
an excessive number of number-filling questions has led to reduced
participant engagement. Offering performance feedback after each
scenario could promote a sense of accomplishment and competence,
helping to maintain participants’ motivation and focus through-
out the experiment. In future experiments, external rewards, such
as points or incentives, could be introduced to further enhance
motivation, as suggested by existing literature [14].

Additionally, the pilot study took approximately 1 hour and 30
minutes to complete, which was significantly longer than antici-
pated. This extended duration resulted in participant fatigue, which
affected concentration and response time. To mitigate these issues,
future experiments should be divided into multiple stages with
breaks in between.

4.3 Learning Effect

Unsurprisingly, a notable learning effect was observed, and most
participants (4 out of 5) demonstrated improved performance in
later scenarios, as they became familiar with task structures, rules,
and strategies. This learning effect potentially introduces bias when
analyzing inter-scenario data, and may lead to overestimating par-
ticipants’ reasoning ability, leading to a less reliable conclusion. As
mentioned in Section 4.1, introducing diverse tasks/domains could
be helpful to reduce the learning effect. With the similar setup of
nesting and reasoning tests, the scenarios among these two tests
could be mixed in a random or reverse order for different subjects to
statistically control for any biases that might arise from the order.

4.4 Data Analysis

The pilot study included only five participants, which is not suf-
ficient to detect meaningful effects or group differences with any
statistical tool. The results of this study mainly validated the fea-
sibility and rationale of the methodology, rather than providing
strong evidence to accept or reject the hypotheses. In the subse-
quent experiment, a larger number of participants will be recruited.
Tools like G*Power and Bayesian Factor Design Analysis will be
used to calculate the necessary sample size [8] based on key factors
such as expected effect size, significance level, statistical power, and
statistical method.

With a large sample size, we can run statistical analysis to verify
our hypothesis as follows.

4.4.1 Hypothesis a: reasoning ability of individuals is consistent
across various scenarios. This hypothesis can be examined using a
Bayesian approach by comparing two different parameterizations
of IRT models. The first model assumes that each individual has a
consistent reasoning ability across all scenarios, while the second
model allows reasoning ability to vary across scenarios. Given the
observed data, we can estimate the posterior distributions for both
models. Model comparison will be conducted using the Bayes factor,
with the model assuming consistency in reasoning ability placed
in the numerator. A larger Bayes factor would indicate stronger
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evidence in favor of the hypothesis that reasoning ability remains
consistent across different scenarios.

4.4.2 Hypothesis b: human belief reasoning abilities are positively
correlated to their nesting abilities. Once we obtain human reason-
ing ability and nesting ability using the processing algorithm pro-
posed in this paper, a correlation analysis can be performed. If the
correlation is found to be significant, we can accept the hypothesis.

4.5 Future Works

If both hypotheses are verified by future experiments, it means
the JP model can be used to understand humans’ high-order belief
reasoning.

By integrating human goal recognition models [32], autonomous
agents could better anticipate human objectives, enabling more effi-
cient assistance. Consider a scenario where a human interacts with
a supernumerary limb, such as a wearable robotic arm. Prior re-
search has demonstrated the effectiveness of a third arm controlled
via physiological signals (e.g., foot movements) for completing tasks
that typically require three hands [21]. However, this approach may
impose additional cognitive load on users. With the personalized
JP model, the supernumerary limb could simulate the user’s higher-
order beliefs about the environment. By incorporating human goal
recognition models, the robotic arm could proactively anticipate
user intentions and assist in task completion without requiring
direct control inputs.

Another promising future direction is applying the proposed
model to understanding trust in human-AlI interaction. As a spe-
cialized form of belief, trust plays a crucial role in ensuring safety
in human-robot collaboration. The proposed model allows for the
nesting of trust models across multiple agents, providing a valuable
framework for studying trust in multi-agent interactions [13, 17,
19].

5 Conclusion

This work presents a pilot study involving five participants to ex-
plore the feasibility of anticipating higher-order human beliefs
through a generalizable formalization using the Justified Perspec-
tive (JP) model. We introduce a novel processing algorithm inspired
by Item Response Theory (IRT) to effectively estimate human belief
reasoning ability from their responses across different scenarios.
The preliminary results suggest that human reasoning ability is con-
sistent within the JP model framework, and is positively correlated
with nesting ability. The limitations of the current study have been
identified and discussed, along with potential statistical analysis
methods for future empirical research. These findings highlight
the potential of bridging theoretical epistemic frameworks with
practical human-centered applications, providing valuable insights
for the design of intelligent human-computer interaction systems
that more effectively comprehend human cognition.
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A An example of JP model
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Figure 4: An example of the nesting test sg.
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In the sg, Robot a is in Room 1, and Robot b is in Room 3. And the
board in Room 2 shows that the number is 11. And at this time,
neither Robot a nor Robot b knows that the number on the board
in room 2, so they have no beliefs.

Level 1: B;N = none, B,N = none

Level 2: BBy N = none, B,B;N = none

Level 3: B;Bp BN = none, B,B;B, N = none
Level 4: B4BpByBy N = none, By ByBpBaN = none
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Figure 5: An example of the nesting test s;.

In the s1, Robot a remains in the room 1, and Robot b enters the
room 2, and sees the number 11. Robot b knows that the number is
11, Robot a still has no beliefs. Also, Robot a knows that Robot b
has seen the number, but Robot a doesn’t know what it is.

e Level 1: B4N = none, BN =11
e Level 2: B4B, N = none, B,B;N = none
o Level 3: B4Byp BN = none, ByByB,N = none
o Level 4: B4By,ByB, N = none, ByBaBpByN = none
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Figure 6: An example of the nesting test s;.
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In the s, Robot b leaves the Room 2, and goes back to the Room
3, and Robot a enters into the Room 2 and changes the number on
the board in the room 2 from 11 to 15.

e Level 1: ByN =15, BN =11

Robot a enters Room 2 and sees that the number is 11. At this
point, Robot a realizes that Robot b must have seen 11 earlier. Then,
Robot a changes the number to 15, and Robot b doesn’t know that
this number change.

o Level 2: B4B,N = 11, B, B;N =11

Robot a changes the number to 15. At this point, a knows that b
is unaware of this change and still believes the number is 11. Robot
b thinks that Robot a sees the number 11.

e Level 3: B4;ByB,N = 11, B, BB, N =11

Robot a knows that Robot b is unaware of the change to the
number, so Robot a knows that Robot b still believes the number
what Robot a thinks is 11.

e Level 4: ByB,ByB,N = 11, B,B,ByBuN = 11

Similar to the level 3.
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Figure 7: An example of the nesting test s3.

In the s3, Robot b goes to the Room 2 and sees the number 15 and
changes it to the 23. And Robot a goes back to the Room 1.
e Level 1: ByN =15, BN =23
At this state, Robot a still believes the number is 15 because it
doesn’t realize the number has been changed. Robot b, on the other
hand, believes the number is 23 because it just changed the number.

Wanchun Li, Chenyuan Zhang, Weijia Li, Guang Hu, and Yangmengfei Xu

e Level 2: B4B,N =15, By,B4N = 15
Robot a still believes the number is 15. Robot b believes Robot a
believes the number is 15, because it sees the number 15 which is
changed by Robot g, so it knows that Robot a believes the number
is 15.

o Level 3: B4BypBgN = 15, B, B;Bp N = 11
Robot a still believes the number is 15. And Robot b thinks that
Robot a still thinks the belief of Robot b remains in the previous
state, which is 11.

e Level 4: ByB,ByB,N = 15, B,ByByBN = 11
Similar to the level 3.
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