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This paper proposes robust controllers for a class of unmanned tracked ground vehicles (UTGVs), which are built to autonomously

clean carryback or spillage from the conveyor belts used in the mining industry. The UTGV, a nonholonomic system in its nature,

needs to follow a given path in a harsh environment with large uncertainties due to the time-varying mass and inertia when the

UTGV loads and unloads as well as unknown frictions and flatness of the ground. Moreover, the input constraints coming from

motors do exist. It is usually hard to design robust controllers for such complex systems. By utilizing the available autonomous

driving system, which is designed to be compatible with the existing remote motion controller in unmanned systems to generate

autonomous ability, this paper uses the off-the-shelf motion planner to calculate desired linear and angular velocities based on the

given path and sensor perceptions. Consequently, the control design can be simplified as two decoupled linear time-invariant scalar

dynamic systems with uncertainties, making the active disturbance rejection controller (ADRC) applicable. By carefully designing

the parameters of ADRC with the help of an extended state observer (ESO), it is shown that the proposed ADRC and ESO can

achieve good tracking performance in the presence of input saturation and can handle non-smooth disturbances. The proposed

simulation results and experimental results support the theoretical findings.
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1. Introduction

Tracked ground vehicles are widely used in industrial ap-
plications, such as agriculture, nuclear sites [1], and the
mining industry [2] because the large contact area of the
continuous tracks with the ground helps increase traction
and helps prevent the vehicle from sinking into soft ter-
rain. The developments in robotic systems enabled tracked
ground vehicles to complete complex tasks in an unmanned
manner. An example of such an unmanned tracked ground
vehicle (UTGV) is a cleaning robot that removes spillage
from conveyor systems efficiently, as shown in Figure 1.

The majority of the UTGV uses a remote controller
to finish the desired task. That is, the remote controller is
manipulated by an operator, generating reference veloc-
ities for the low-level controller or the motion controller
in the embedded system. In this remote control setting,
the experienced operator has the ability to handle various
uncertainties during the operations of UGTVs. If a fully
autonomous UTGV is developed, designing its control al-
gorithms becomes challenging due to the following factors.
First of all, the dynamics of the UTGVs are so-called non-
holonomic, whose state depends on the path taken in order

to achieve it. It is well-known that non-smooth control laws
are needed to stabilize nonholonomic systems, as indicated
in [3]. Secondly, the UTGV may have time-varying mass
and inertia when it loads and unloads, as shown in the ex-
ample of the cleaning robot in Figure 1. Thirdly, the fric-
tion of the ground could change from place to place as the
UTGVs normally work on unconstructed terrain. Different
materials have different friction coefficients. Last but not
least, the UTGVs also exhibit complex behaviours due to
the nonlinear undercarriage and transmission design. This
work will focus on developing control algorithms to handle
these uncertainties for nonholonomic systems by using the
existing autonomous driving system (ADS).

Fig. 1. An UTGV designed for cleaning purposes in mining.
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Different ways to equip the existing unmanned systems
with autonomy ability have been proposed in ADS [4]. In
particular, to accommodate the existing motion controller
setting in the majority of UTGV, one of the typical struc-
tures of the ADS is shown in Figure 2. The sensors, such
as light detection and ranging (LiDAR) sensors or cam-
eras, are equipped on UTGV to provide localization. The
role of the path planner is to generate a feasible or opti-
mal global path with respect to the cost, such as minimal
distance, connecting the robot’s current localization to the
final destination. Once the global path is obtained, the mo-
tion planner will calculate desired reference velocities based
on the given path and sensor perceptions. The motion con-
troller will then track these reference velocities and send
the commands (i.e. torques) to the actuators. In such a
way, the ADS can be added to the existing UTGV by only
replacing the existing remote controller and the operator.

Fig. 2. Incorporating autonomous driving system (ADS) with
the remote control setting.

If a motion controller is used, with the help of the
off-the-shelf motion planner coming from ADS, the con-
trol design for autonomous UTGV can be simplified as two
independent low-level loops, which are designed to track
the given reference linear velocity and angular velocity, re-
spectively. Each loop will decide a control law to track the
desired reference velocity of UTGV from the motion plan-
ner based on a scalar linear time-invariant (LTI) dynamic
system affected by unknown lumped modelling uncertain-
ties. Using this simplification, the widely used active dis-
turbance rejection control (ADRC) algorithm is directly
applicable, while the nonholonomic system with lumped
uncertainties is not in standard ADRC form (see [5] for
more detailed discussion).

ADRC algorithms have been used in many engineer-
ing applications to cancel the effect of the unknown time-
varying modelling uncertainties by estimating these uncer-
tainties as external state information, see [5–9] and refer-
ences therein. It always works together with the extended

state observer (ESO), which aims to estimate the unknown
time-varying uncertainties, as in [10–13].

In the existing ESO, as a standing assumption, it is al-
ways required that the uncertainties are smooth. i.e., their
time derivatives exist and are uniformly bounded, see, for
example, [10–13] and references therein. However, due to
the existence of rocks or bumps on unconstructed terrain,
jumps in terms of friction exist. These jumps, when treated
as uncertainties, do not have well-defined time derivatives.
Hence, the existing ESO cannot be directly applied. In
this work, by using upper Dini derivatives, we can relax
the smooth requirement uncertainties so that the ADRC
and ESO can be adapted to our application to handle non-
smooth uncertainties. Moreover, the proposed method can
handle unbounded disturbances such as ramp signals.

In this work, input constraints, which always exist in
engineering applications due to the limited capacity of actu-
ators, are also considered. It is noted that the anti-windup
technique has been widely used in industrial applications
as an additional block to drive the input of the actuator
away from the saturation bound when the saturation hap-
pens. For an LTI system, linear matrix inequalities (LMIs)
have been used to find an appropriate feedback gain to
avoid saturation from happening in [14]. By introducing
the concept of compatible disturbance with input satura-
tion bound, the analysis of linear LTI systems with input
saturation becomes much simpler as it does not require an
extra anti-windup block or solving LMIs.

By utilizing the off-the-shelf ADS and dual-loop de-
sign, it is possible to coordinate the parameters of ESO and
ADRC for scalar linear time-invariant (LTI)to avoid pos-
sible input saturation under some weak conditions. More
precisely, our main results show that if there is no input
saturation, it is always possible to tune the parameters of
the ADRC and ESO so that the solutions of the track-
ing errors are uniformly ultimately bounded, which can be
made arbitrarily small (see Proposition 3.2). When in-
put saturation exists, if the uncertainties are compatible
with the saturation bound, it is always possible to tune
the parameters of ADRC and ESO so that the solutions of
the tracking errors can achieve some ultimate bound (see
Proposition 3.5). The proposed technique is also applicable
to various forms of vehicle chassis like skid drive and differ-
ential drive, as well as applications when human operators
are driving a vehicle using velocity commands.

The effectiveness of the proposed algorithms is val-
idated via both simulations and experiments. MATLAB
simulations show how the selection of parameters of ADRC
and ESO affects the overall tracking performance. A Unity-
ROS simulation using a skid drive with six wheels (three
wheels on each side) is also presented to compare the path
tracking performance between a path follower with a uni-
cycle model [15] and the motion planner using a simplified
model, showing the effectiveness of the proposed method.
Other than demonstrating how robust the proposed algo-
rithms are in different ground situations, our experimen-
tal results also compare with the standard proportional-
integral (PI) controllers, which are frequently used in track-



January 28, 2026 3:11 output

On Active Disturbance Rejection Control for Unmanned Tracked Ground Vehicles with Non-smooth Disturbances 3

ing reference velocities, showing good performance in terms
of tracking a given path.

2. Problem Formulation

Let R and Rn denote the set of real numbers and an
n-dimensional Euclidean space respectively. For an n-
dimensional vector x ∈ Rn, its Euclidean norm is defined as

|x| =
√
xTx, where xT denotes the matrix transpose. The

notion of diag(·) represents a diagonal matrix with an ap-
propriate dimension. For any matrix A ∈ Rn×m, its norm
is the induced Euclidean norm.

The upper Dini derivatives are used to represent a
class of generalizations of the derivative, that is, for a semi-
continuous function f(t) a:

D+f(t) = lim sup
h→0+

f(t+ h)− f(t)

h
.

A continuous function α : R≥0 → R≥0 is said to be
class K if its initial condition α(0) = 0 and strictly in-
creasing. The function α is a class K∞ if it is class K and
lim
a→∞

α(a) → ∞. A continuous function β : [0, a)×[0,∞) →
[0,∞) is said to belong to class KL if, for each fixed s, the
mapping βa(r, s) belongs to class K with respect to r and
for each fixed r, the mapping β(r, s) is decreasing with re-
spect to s and β(r, s) → 0 as s → ∞ [16].

The set containing all absolute-value integrable signals
is denoted as L1. For any w(·) ∈ L1, its norm is defined as

∥w∥1 :=

∫ ∞

0

|w(t)| dt. The set containing all essentially

bounded measurable functions is denoted as L∞. For any
w(·) ∈ L∞, its norm is defined as ∥w∥∞ := esssupt≥0|w(t)|.

2.1. Problem Setting

This paper considers a UTGV to finish a given task, such
as cleaning carryback or spillage underneath the conveyor
belt, as shown in Figure 1. To navigate the robot in such an
environment, two frames are defined as shown in Figure 3.
The local frame or body frame is denoted as {R}. Assume
that the v and ω are the linear and angular velocities of
UTGV in this local frame respectively. Here xr and yr are
the robot position in the x-y plane of the global frame {G}
and θr is the heading of the UTGV in the global frame
{G}.

Fig. 3. An UTGV in the body frame.

Many models have been used to characterize UTGV dy-
namics and kinematics. For example, the different variants
of nonlinear unicycle models [15, 17] have been proposed.
The basic form of the nonlinear unicycle model is

ẋr = v cos(θr)

ẏr = v sin(θr)

θ̇r = ω, (1)

with (xr, yr, θr) defined before. Here (v, ω) are control input
signals to be designed to follow a given reference trajectory
(xr,ref (t), yr,ref (t), θr,ref (t)).

Remark 2.1. In [15], the unicycle model (1) considered
the existences of disturbances in a 2D coordinate (x, y, θ).
The dynamics become

ẋr = α1v cos(θr) + β1

ẏr = α2v sin(θr) + β2

θ̇r = α3ω + β3, (2)

where αi and βi parameters are added to represent the
effect of possible slips from tracks. The disturbance param-
eters αi and βi, i = 1, 2, 3, are then estimated by Extended
Kalman Filter (EKF) as explained in [15]. Using the idea
similar to ADRC, after estimating the unknown parame-
ters, the nonlinear controller was proposed to cancel the
effect of uncertainties in [15]. Although the experimental
results showed promising results, there was no theoretical
analysis to show the boundedness of tracking errors in [15].
It is highlighted that in their design, the concept of ADRC
is used to correct the reference velocities generated by the
motion planner from ADS. While in our design, the motion
planner from ADS is used to generate reference velocities
(see Figure 2). These two designs use ADS in different ways,
and our simulation results presented in Section 4.2 compare
these differences. ◦

Such a unicycle model is hard to use. In this work, we
assume the UTGV is equipped with ADS, which provides
global pose information to the robot and sends reference
velocities (vref , ωref ) to the motion controller using the

aThe function is semi-continuous if it is continuous almost everywhere, except at certain points at which it is either upper semi-
continuous or lower semi-continuous.



January 28, 2026 3:11 output

4 Liu et al.

algorithms compatible with aforementioned ADS frame-
work [18,19]. A more detailed explanation of the reason why
the unicycle model is used is presented in Remark 2.2. This
research focuses on tracking reference velocities, which are
both in the local frame. Therefore, no global pose informa-
tion is needed in this research, and only IMU and encoders
are used to provide feedback in the control loop. Two mo-
tors are used to drive two tracks. Here (τl, τr) represents
the torque applied to the left and right track respectively.

The control objective of this work is to design an ap-
propriate low-level control loop to drive (τl, τr) so that the
UTGV will follow the desired reference linear velocity vref
and angular velocity ωref respectively, computed from the
path planning and motion planning.

2.2. A Simplified Model

In this paper, a simple dynamic model for body frame {R}
is used for the design of the low-level control. It has the
following form:

ω̇ = 1
J (τ + dτ ) (3)

v̇ = 1
m (F + dF ), (4)

where J is the inertia of the UTGV, m is the mass of the
UTGV, τ is the overall torque applied to the UTGV by
the actuator, and dτ represents the lumped unknown un-
certain torque generated by unknown disturbances coming
from the modelling uncertainties, the variation in the veloc-
ities per track, pose change due to the problem of slippage,
as well as terrain compression as indicated in [17]. Similarly,
the notion of F is the overall force applied by the actuator
while dF represents the unknown lumped uncertainties in
terms of forces. These uncertainties, dτ and dF , are usually
called total disturbance in ADRC and ESO.

It is noted that the motion planner normally runs at a
lower frequency than the motion controller, therefore, the
reference velocities of the motion controller from the mo-
tion planner can be treated as a constant. Thus the control
objective is, for a given reference position trajectory, to
design the control input (τ, F ) to track constant reference
velocities computed from the motion planner.

By using IMU and encoder information, the output of
the UTGV is

y =

[
y1
y2

]
=

[
ω
v

]
∈ R2, (5)

while the control input becomes

u =

[
u1

u2

]
=

[
τ
F

]
∈ R2. (6)

Remark 2.2. The reason for using this simple model is
three-fold. Firstly of all, different from the unicycle model
(1), this linear time-invariant (LTI) model consisting of (3)
and (4) decouples the design of the linear velocity v(t) and
angular velocity ω(t). This greatly simplifies the design of

control laws. Secondly, this simple LTI model (3) (4) con-
siders unmodelled uncertainties dτ and dF , which can com-
pensated the mismatches between dynamic (3) (4) and (1).
Finally, this model only requires the information measured
from the body frame without the need of (x, y, θ), which is
needed in our problem setting. ◦

It is assumed that the lumped uncertainty torque dτ (t)
and the lumped uncertainty force dF (t) satisfy the follow-
ing assumption.

Assumption 2.3. The Dini derivatives of lumped uncer-
tainty torque dτ (·) and the lumped uncertainty force dF (·)
exist almost everywhere. Moreover, they are in L1 ∪ L∞.
That is, there exist two unknown positive constants M̄τ ,
and M̄F such that the following inequalities hold

min
{∥∥D+dτ

∥∥
∞ ,

∥∥D+dτ
∥∥
1

}
≤ M̄τ (7)

min
{∥∥D+dF

∥∥
∞ ,

∥∥D+dF
∥∥
1

}
≤ M̄F . (8)

Remark 2.4. Assumption 2.3 includes a very large class
of disturbances, including step disturbances, ramp distur-
bances (unbounded), pulses disturbances, and many non-
smooth disturbances. In ADRC and ESO design, one of the
standing assumptions for the total disturbances is that it is
differentiable and its time derivative is bounded, for exam-
ple, see [13,14] and reference therein. Although in [20, Hy-
pothesis A4], the disturbances with jumps were considered,
they are requested to be bounded. In this paper, the dis-
turbances can be unbounded. To the best of the authors’
knowledge, this assumption is the weakest possible assump-
tion for total disturbances. As disturbances considered here
might not be bounded, the widely used robust control tech-
niques such as sliding mode control [21] cannot be directly
applied either. ◦

2.3. Input Constraints

In this work, F (t) and τ(t) are the equivalent force and
torque at the centre of gravity of the UTGV. These signals
are used to compute the traction torques τr and τl to drive
the right track and the left track respectively. The side view
and the top view of the UTGV are shown in Figure 4 where
(Fl, Fr) represents the equivalent force for the left and right
tracks respectively. The notion of d is the height of the track
while D is the distance between two tracks on each side.

Fig. 4. UTGV Geometry - Left: top view; Right: side view.
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When the tracks are not slipping, it has

τr = Fr ·
d

2
, τl = Fl ·

d

2
. (9)

Assuming that the equivalent force satisfies

F = Fr + Fl,

with the equivalent torque τ satisfying

τ =
D

2
(Fr − Fl),

leading to the following applied torque to the left and right
track (τl, τr) respectively

τr(t) = sat
(
1
2

(
F (t)d2 + τ(t) d

D

)
, τmax

)
(10)

τl(t) = sat
(
1
2

(
F (t)d2 − τ(t) d

D

)
, τmax

)
, (11)

where τmax > 0 is the maximum absolute torque that two
actuators can produce. Here the saturation function sat(·, ·)
is defined as

sat(τ, τmax) =

{
τmax if τ ≥ τmax

τ if − τmax ≤ τ ≤ τmax

−τmax if τ ≤ −τmax

. (12)

Remark 2.5. It is noted that (10) and (11) are obtained
under the assumption that the tracks are not slipping. Such
an assumption does not always hold when the UTGV is per-
forming its tasks in engineering applications. One of the key
advantages of this problem formulation is that the UTGV
is modelled by two decoupled scalar systems. All the mis-
matches between the model, which is characterized by (10)
and (11), and the UTGV can be incorporated into the to-
tal disturbances for the scalar dynamics. These unknown,
possibly time-varying total disturbances will be estimated
by ESO while ADRC will cancel the effect of the total dis-
turbances, leading to robust performance. ◦

Remark 2.6. From the (10) and (11), it follows that

|F (t)| ≤ 4τmax

d
, (13)

|τ(t)| ≤ 2D · τmax

d
, (14)

which are two constraints for input signal ω(t) and v(t).
Consequently, the dynamics (3) and (4) can be re-written
as

ω̇ = 1
J (sat(τ, τ̄max) + dτ ) (15)

v̇ = 1
m (sat(F, Fmax) + dF ) , (16)

where τ̄max = 2D·τmax

d and Fmax = 4τmax

d . ◦

With consideration of the simplified model and the input
constraints, the control objective is modified as designing
the actuation command F (t) and τ(t),∀t ≥ 0 with actua-
tion constraints to track the desired reference linear veloc-
ity vref and angular velocity ωref respectively, computed

from the path planning, in the presence of lumped uncer-
tain torque dτ and lumped uncertain force dF , which satisfy
Assumption 2.3.

Next will show how to use the ADRC and the ESO to
achieve this modified control objective.

3. Main Results

Robust control methods are natural choices to handle the
unknown lumped uncertainties dτ and dF that satisfy As-
sumption 2.3. Among them, the active disturbance rejec-
tion control (ADRC) algorithms (see, for example, [5–9]
and references therein), working together with the extended
state observer (ESO) (see, for example, [10–13] and refer-
ences therein) have gained a lot of attention recently. The
key ideas of using ADRC and ESO are quite simple. The
role of ESO is to online estimate the lumped uncertain-
ties, which are treated as the extended state, while ADRC
will cancel the influences of lumped uncertainties or the ex-
tended state and stabilize the system or track the reference
signal.

Let x =

x1

x2

x3

x4

 =

 ω
dτ
v
dF

 be the extended state of sys-

tem characterized by (3) and (4). The proposed ESO takes
the following form:

ΣO :


˙̂x1 = 1

J x̂2 +
1
J u1 + l1(y1 − x̂1)

˙̂x2 = η1(y1 − x̂1)
˙̂x3 = 1

m x̂4 +
1
mu2 + l2(y2 − x̂3)

˙̂x4 = η2(y2 − x̂3)

, (17)

where y1 and y2 are defined in (5) and are measured
from IMU and encoder. For a given desired velocities
(vref , ωref ), the control input signals u1 and u2 are defined
in (6). Besides canceling the effect of the lumped uncer-
tainties dτ and dF , a standard PI controller is also used to
track the reference, thus, the ADRC takes the form of (18)
and (20). That is,

u1(t) = −x̂2 + kP,1e1 + kI,1

∫ t

0

e1(τ)dτ (18)

where

e1(t) = ωref − y1(t). (19)

Similarly, u2(t) = F (t) is computed as

u2(t) = −x̂4 + kP,2e2 + kI,2

∫ t

0

e2(τ)dτ, (20)

where

e2(t) = vref − y2(t). (21)

The parameters l1, η1, l2, η2, kP,1, kI,1, kP,2, kI,2 are tuning
parameters to be designed.
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Remark 3.1. It is noted that for a scalar dynamic system,
a proportional controller can stabilize the system. An inte-
gration control is added to ensure zero steady-state error
when tracking set-points. It can also reject constant distur-
bances as discussed in [22]. ◦

Before stating the main result, we introduce the closed-
loop system in the state-space, which consists of the esti-

mation error x̃ =

 x̃1

x̃2

x̃3

x̃4

 =

x1 − x̂1

x2 − x̂2

x3 − x̂3

x4 − x̂4

 and tracking error

z =

 z1
z2
z3
z4

 =


∫ t

0
e1(τ)dτ
e1∫ t

0
e2(τ)dτ
e2

. They can be decoupled into

two subsystems Σω and Σv.

Σω :


ż1
ż2
˙̃x1
˙̃x2

 =


0 1 0 0

−kI,1

J −kP,1

J 0 − 1
J

0 0 −l1
1
J

0 0 −η1 0


 z1
z2
x̃1

x̃2

+

 0
0
0

D+dτ (t)

 ,

Σv :


ż3
ż4
˙̃x3
˙̃x4

 =


0 1 0 0

−kI,2

m −kP,2

m 0 − 1
m

0 0 −l2
1
m

0 0 −η2 0


 z3
z4
x̃3

x̃4

+

 0
0
0

D+dF (t)

 .

For the convenience of notation, we denote

A1 =

[
0 1

−kI,1

J −kP,1

J

]
, A2 =

[
0 0

− 1
J 0

]
, A3 =

[
−l1

1
J

−η1 0

]
,

A4 =

[
0 1

−kI,2

m −kP,2

m

]
, A5 =

[
0 0

− 1
m 0

]
, A6 =

[
−l2

1
m

−η2 0

]
,

Φ1 =

[
A1 A2

02×2 A3

]
,Φ2 =

[
A4 A5

02×2 A6

]
,

and B =

0
0
0
1

. It is assumed that by selecting parameter

pairs (l1, η1) and (l2, η2) appropriately, the matrices A3 and
A6 are Hurwitz so that lim

t→∞

∣∣eA3t
∣∣ = 0 and lim

t→∞

∣∣eA6t
∣∣ = 0

Consequently, the following two closed-loop systems
are obtained:

Σω :


ż1
ż2
˙̃x1
˙̃x2

 = Φ1

 z1
z2
x̃1

x̃2

+BD+dτ , (22)

Σv :


ż3
ż4
˙̃x3
˙̃x4

 = Φ2

 z3
z4
x̃3

x̃4

+BD+dF . (23)

As Φ1 (Φ2) is in an upper-triangular form, its eigenvalues
are determined by A1 (A4) and A3 (A6) respectively. With

the consideration of the saturation function in computed τr
and τl (see Equations (10) and (11)), the following results
are obtained for Σω. Similar results can be obtained for Σv

as Σω and Σv have a similar structure. Due to the space
limitation, we only present the results for Σω

We present two different sets of results for the closed-
loop system (22). One result does not consider the input
saturation, i.e., τ̄max = +∞, while the other result consid-
ers the input saturation.

Proposition 3.2. Let τ̄max = +∞. Assume that the un-
certainty dτ in the system (3) satisfies Assumption 2.3 with
the control input u1 taking the form of (18) with the ESO
parameters l1, η1 are selected such that the matrix A3 is
Hurwitz. For the given reference velocity ωref , any distur-
bance bound M̄τ , and any positive constant ν1, by tuning
parameters kP,1, kI,1, l1 and η1 appropriately, there ex-
ists a positive pair (M1, λ1) such that the solutions of the
closed-loop system Σω (22) satisfy the following inequality

|e1(t)| ≤ M1e
−λ1t |e1(0)|+ ν1, (24)

Moreover, no input saturation will happen and all the state
trajectories of Σω are uniformly bounded.

Proof: Due to space limitation, only the sketch of proof is
provided.

In (22), if Assumption 2.3 is satisfied and the ma-
trix A3 is Hurwitz, we can show that two trajectories
(x̃1(t), x̃2(t)) are uniformly bounded. The bound is related
to M̄r and is denoted as MESO,1 = MESO,1(M̄r).

It is noted that the dynamics of z1(t), z2(t) are domi-
nated by A1 perturbed by A2 with uniformly bounded so-
lutions. The solutions converge to a neighbourhood of the
origin ν1, called ultimate bound [16]. For a given MESO,1

and ν1, it is always possible to tune the parameters of the
PI controller such that the inequality (24) holds for the
given ν1. Moreover, the state trajectories of Σω are uni-
formly bounded. This completes the proof. □

Remark 3.3. Although Proposition 3.2 is long, its state-
ment reflects the tuning process of the proposed ESO and
ADRC. The tuning of PI parameters and parameters of
ESO need to be coordinated in order to avoid input satu-
ration. Based on the knowledge of disturbances, the system,
the reference velocity and the desired ultimate bound ν1, we
can tune PI parameters and parameters of ESO to achieve
the desired ultimate bound ν1 without input saturation. It
is noted that two parameters (M1, λ1) are dependent on the
choice of PI parameters and cannot be arbitrarily selected.
◦

Remark 3.4. Proposition 3.2 indicates that when there is
no input saturation, by tuning PI parameters appropriately,
the tracking error can converge to an arbitrarily small ul-
timate bound if uncertainties satisfy Assumption 2.3. This
includes two different cases. The first case is D+dτ ∈ L∞.
For a given M̄r, the bound MESO,1 can be made arbitrarily
small by tuning l1 and η1. Under such a situation, tuning
PI parameters becomes easier in order to achieve (24) for
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the arbitrarily small ν1. The second case is D+dτ ∈ L1. In
this case, for a given M̄r, the MESO,1 is bounded, but it
cannot be tuned arbitrarily small. Consequently, the larger
PI parameters are needed in order to achieve (24) for the
arbitrarily small ν1. ◦

Next proposition considers how to tune the parameters
of the PI controller in the presence of input saturation. A
simple principle of design is to prevent saturation from hap-
pening by using smaller PI parameters. Such a principle can
greatly simplify the stability analysis as the closed-loop sys-
tem is still linear time-invariant when saturation does not
happen. But this design will lead to weak stability results,
such as a slower convergence speed, a smaller domain of
attraction, and a larger ultimate bound.

It is worthwhile to highlight that the control law (18)
will cancel the effect of the disturbance dτ . If a time-varying
disturbance dtau(t) satisfies Assumption 2.3 but unbounded
at some time instant, by applying (18) with a perfect esti-
mation x̂2 = x2 = dτ , the computed control input becomes
unbounded even though trajectories z1(t), z2(t), x̃1(t), x̃2(t)
are uniformly bounded. A bounded (or saturated input) is
not able to reject an unbounded disturbance.

Next, the concept of compatibility between the distur-
bance and the saturation is proposed. We called the distur-
bance dτ is compatible with input saturation bound τ̄max

if it satisfies the following inequality:

∥dτ∥∞ +Md +MESO,1(M̄r) < τ̄max. (25)

This leads to the following result.

Proposition 3.5. Assume that the uncertainty dτ in the
system (3) satisfies Assumption 2.3 and is compatible with
input saturation bound τ̄max. Assume that the control in-
put u1 takes the form of (18) with the ESO parameters l1, η1
selected such that the matrix A3 is Hurwitz. For the given
reference velocity ωref and the given disturbance bound
M̄τ , there exists a positive pair (∆1, ν2) such that by tun-
ing parameters kP,1, kI,1, l1, and η1 appropriately, there
exists a positive pair (M1, λ1) such that the solutions of the
closed-loop system Σω (22) satisfy the following inequality

|e1(t)| ≤ M1e
−λ1t |e1(0)|+ ν2, (26)

for all |e1(0)| ≤ ∆1. Moreover, the input saturation will not
happen and all the state trajectories of Σω are uniformly
bounded.

Proof:
For the given τ̄max, we can select some domain of at-

traction ∆1 < τ̄max such that

∥dτ∥∞ +∆1 +MESO,1 ≤ τ̄max,∀t ≥ 0.

Moreover, for the given ∆1, we can select PI parameter pair
(kP,1, kI,1) to satisfy the following inequality:∣∣∣∣[kI,1 0

0 kP,1

]
eA1t

∣∣∣∣∆1 +MESO,1 ≤ τ̄max,∀t ≥ 0,

so that no saturation will happen. Then, there exists an ul-
timate bound ν2 < ∆1 such that the inequality (24) holds.

The uniform boundedness of the state trajectories of Σω

can be guaranteed. This completes the proof. □

Remark 3.6. When D+dτ is in L∞, we can select the pa-
rameters of ESO to achieve better performance. For exam-
ple, we can choose the domain of the state estimation error
sufficiently small so that if ∥dτ∥∞ < τ̄max is satisfied, the
disturbance dτ is always compatible with τ̄max by selecting
l1 and η1 appropriately, Thus the compatibility assumption
can be relaxed. When input saturation is considered, the
parameters (kP,1, kI,1) need to be carefully tuned to pre-
vent saturation from happening. It also suggests that we
can not make ultimate bound ν2 arbitrarily small. ◦

4. Simulation Validation

Two types of simulations are presented to illustrate the ef-
fectiveness of the proposed method. The first type is to sim-
ulate how the selection of parameters of ADRC and ESO
will affect the overall tracking performance. More precisely,
the role of this simulation is to illustrate how two proposi-
tions work in terms of the selection of tuning parameters.

The second type of simulation is a Unity-ROS simu-
lation, which has been widely used in robotics to evaluate
robot performance in terms of localization, motion planning
and control before implementing them in a robot. This sim-
ulation uses a skid drive with six wheels (three wheels on
each side). The purpose of this simulation is to compare
two different ways to track a given path: one uses a mo-
tion planner along with the control algorithm based on the
unicycle model, and the other uses the motion planner and
our proposed method. The performance comparison with
the baseline PI controller is also presented.

4.1. MATLAB Simulations

As two subsystems (3) and (4) have similar structures, the
focus in simulation is the subsystem (3) in order to demon-
strate Propositions 3.2 and 3.5. For this subsystem, the
parameters include PI parameters in (18), the domain of
attraction ∆1, and the ultimate bound ν1 for a given posi-
tive constant τ̄max and M̄r.

Two different types of uncertainties will be considered.

D1 : dτ = sin(10t) + t. This disturbance satisfies
D+dτ ∈ L∞ with M̄r = 11.

D2 : dτ = sin(10t)+ pulse(t), where pulse(t) is a peri-
odic pulse signal with the period 2π. This distur-
bance satisfies D+dτ ∈ L∞ ∩ L1 with M̄r = 10.

We also consider three cases: Case 1: there is no input sat-
uration, i.e., τ̄max = +∞, Case 2: τ̄max = 5, and Case 3:
τ̄max = 1.

It is worthwhile to highlight that the role of MAT-
LAB simulations is to show how to tune the parameters
of the proposed ESO and ADRC to achieve the desired
performance when different disturbances are selected. The
purpose of these simulations is to validate the main results
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(Proposition 3.2 and Proposition 3.5). In these simulations,
these disturbances are not requested to be practical as long
as they satisfy Assumption 2.3. Moreover, these two distur-
bances are selected to emulate two possible practical sce-
narios. More precisely,D1 can represent the condition when
the UGTV is loading or unloading materials with the ex-
istence of some mechanical failure points in the continuous
track. Similarly, D2 emulates the simulation when there are
bumps on the ground with the existence of some mechan-
ical failure points in the continuous track. Moreover, the
effectiveness of the proposed ADRC and ESO are tested by
using Unity-ROS simulation and experiments with more
practical disturbances in the following subsection.

The simulation is performed using MATLAB R2021b
(The MathWorks Inc., USA) and Simulink (The Math-
Works Inc., USA). In all simulations, parameters m, J are
fixed as m = 7.7kg and J = 0.2kg/m2, which are the val-
ues of m and J of the experiment platform that will be
introduced in the next section.
Effect of ESO Parameters

Next discuss how the choice of ESO parameters l1, η1
affects the tracking performance for different cases under

two disturbances. It is noted that the eigenvalues of A3 are
determined by l1 and η1 when J is fixed. This matrix is se-
lected to be a Hurwitz. We denote λmax = |max {λ1, λ2}|.

When D1 exists, as shown in Figure 5(a)(b), the larger
λmax, the faster the estimation error converges with a
smaller ultimate bound. By selecting appropriate PI pa-
rameters, as shown in Figure 6(a), we can obtain an arbi-
trarily smaller ultimate bound for e1(t), which is consistent
with the results in Proposition 3.2. For the different choices

of λmax, we fix

[
x̃1(0)
x̃2(0)

]
=

[
0.01
0.01

]
. For example, three dif-

ferent A3 matrices are selected as A3,1 =

[
−10000 5
−600 0

]
,

λmax,1 = 0.3, A3,2 =

[
−10010 5
−20000 0

]
, λmax,2 = 10 and

A3,3 =

[
−15000 5
−107 0

]
, λmax,3 = 5000.

When D2 exists, as shown in Figure 5(c)(d), the larger
λmax, the faster convergence speed of the estimation error
with a smaller ultimate bound, but the ultimate bound can
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Fig. 5. Effect of ESO pole position on ultimate bound MESO,1 with Uncertainty D1 and D2.
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not be arbitrarily small. Nevertheless, the ultimate bound
for e1(t) can still be made arbitrarily small by tuning PI
parameters appropriately, as shown in Figure 6(b).
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Fig. 6. Given the same PI parameters and τ̄max = ∞, different
choices of parameters in ESO will affect the ultimate bound ν1
for Uncertainties D1 and D2.
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Fig. 7. Achieving the desired ultimate bound for two different
types of disturbances by tuning parameters appropriately when
there is no input saturation.

In order to demonstrate how to tune such PI parameters,

we fix A3 as

[
−10500 5
−106 0

]
, λmax,3 = 500 as well as the

desired ultimate bound ν = 0.01. For two disturbances,
two different sets of PI parameters are used to achieve
this ultimate bound. For D1, PI parameters are selected
as kP,1 = 4.2, kI,1 = 4 while for D2, PI parameters are se-
lected as kP,1 = 82, kI,1 = 800. The performance is shown
in Figure 7, which is consistent with the results in Propo-
sition 3.2.
Effect of Input Saturation

When saturation exists, the first thing we need to
check is whether the disturbances are compatible with the
saturation bound in order to apply Proposition 3.5. Obvi-
ously, for any bounded input, it is not possible to cancel
the effect of D1 as it will approach ∞. The unbounded
disturbance with input saturation might lead to unstable
performance, as shown in Figure 8 when τ̄max = 5 (Case 2)
is used for the different choices of λmax, and various choices
of PI parameters.
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Fig. 8. The actuator bound is incompatible with Uncertainty
D1.
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Fig. 9. The actuator bound is compatible with Uncertainty
D2.
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For disturbances D2, as stated in (25), it is compati-
ble with τ̄max = 5, but it is not compatible with τ̄max = 1.
Thus only Case 2 is simulated.

In Case 2, we can select small initial estimation error[
x̃1

x̃2

]
=

[
0.01
0.01

]
and initial tracking error e1(0) = 1 and fix

PI parameters kP,1 = 2.02, kI,1 = 0.2. For three different
choices of ESO, the three tracking errors converge to some
ultimate bounds, as shown in Figure 9. This is consistent
with the result in Proposition 3.5.

4.2. Unity-ROS Simulations

The simulation of a robot equipped with ADS is presented
with Robot Operating System (ROS) distribution Noetic
and Unity (Unity Software Inc., Denmark). The role of
unity-ROS simulation is to compare two different ways to
use ADS in autonomous systems and the baseline PI con-
troller.

Fig. 10. Screen shot of the simulation scene in Unity.

Figure 10 shows the simulation environment in Unity.
The robot model in the simulation has three wheels on
each side. Two perceptions, 2D LiDAR scan and robot
odometry, are used to provide information for the robot.
The localization algorithm called Adaptive Monte-Carlo
Localization (AMCL) [23] is used to provide global pose
feedback. In these simulations, the robot is commanded
to follow a round-corner-L-shaped trajectory. The straight
lines of the trajectory are both 1.5m long, and the
round corner has a radius of 1.5m. The motion plan-
ner is implemented via a PID controller [24], which runs
at 10Hz. Parameters of the motion planner is set as
target x vel = 1.5, target x acc = 10.0, target yaw vel =
4.0, target yaw acc = 10.0, Ki long = 0.2, Kp long = 5.0,
Kd long = 0.5, Ki lat = 0.1, Kp lat = 10.0, Kp lat = 1.0,
Ki ang = 0.4, Kp ang = 7.0, Kd ang = 0.8. The defi-
nition of the parameters above is shown in [24]. All the
parameters of them motion planner is set empirically.
An unicycle model + robust controller

The robust controller, mentioned in Remark 2.1, is
used based on the given path and the unicycle model (see
more details in [15]). It uses EKF based on (2) to estimate
the disturbances online. The estimated disturbance terms

are then used to correct the motion planner. The EKF
runs at 50Hz. To test the robustness of [15] over noises,
uniformed noise whose probability density function (PDF)
satisfies U(−0.05, 0.05) is added to each of the three de-
grees of freedom of the pose measurements, and uniformed
noise with PDF satisfying U(−0.03, 0.03) is added to an-
gular and linear velocity measurements. According to the
pose noise and velocity noise, the process noise covariance
matrix Q and measurement noise covariance matrix R are
designed as

Q = 10−4 ×
[
3 0
0 3

]
, R = 10−4 ×

[
8.3 0 0
0 8.3 0
0 0 8.3

]
.

Motion planner + the proposed method
For a given path, the proposed method uses the motion

planner, the simplified model, and the proposed ADRC and
ESO. The selected parameters are m = 150, J = 10; and
the values of the matrices are

A1 =

[
0 1
0.3 10

]
, A3 =

[
−60 0.1
−900 0

]
A4 =

[
0 1

0.0667 6.67

]
, A6 =

[
−60 0.0067
−900 0

]
To be tested in the Unity-ROS simulation, the proposed
method is discretised with Euler method, and runs at 50Hz.
PI controller

The widely used PI controller served as a baseline here,
with the parameters kI,ω = 3, kP,ω = 100, kI,v = 10, and
kP,v = 1000. The PI controller also runs at 50Hz.

Two cases of wheel-terrain contact are simulated:

Case 1 Wheels on each side have the same friction rate
(0.7) with the terrain;

Case 2 Friction rate (0.08) of the wheels on the right side
is significantly lower than the left side (0.7).

The terrain is flat in both cases.
The three controllers are implemented using a sam-

pling data structure, i.e. ,

u1(t) = u1(kT ), u2(t) = u2(kT ),∀t ∈ [kT, (k + 1)T ),(27)

where T is the sampling period.
As the reference trajectory has n sampling points, the

position tracking error at the ith sampling point t = ti is
defined as

ϵx,i = xr,ref (ti)− xi,

ϵy,i = yr,ref (ti)− yi,

where (xi, yi) is the robot position in the global frame {G}
gat the ith sampling instant. To evaluate the effect of the
control law, the position mean absolute error (PMAE) is
thus defined:

ϵ =
1

n

n∑
i=1

√
ϵx i

2 + ϵy i
2. (28)
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To demonstrate the performance of ADRC and PI
controllers in general cases, the averages of the PMAE in
both cases are also calculated and presented in Table 1.
The method proposed in this paper is denoted as ADRCv,
whereas ADRCp denotes the method proposed in [15] here-
after.

The results of the simulation are shown in Table 1.
These results show that the proposed ADRC and ESO can
work much better than the baseline PI controller and the
robust control using the unicycle model.

Table 1. Tracking error of navigation system. (Unit: m)

Case 1 Case 2 Average

ϵPI 0.236 0.507 0.372
ϵADRCv

0.127 0.254 0.191
ϵADRCp

0.195 0.386 0.291

5. Experimental Validation

An experiment is designed and tested on a lab-made experi-
mental platform, most of whose parts are made by 3D print-
ing, including the continuous tracks and track wheels as
shown in Figure 11. The platform has similar track wheels
as the prototype built in Figure 1. All the pieces of the
track are bolted together. The chassis of the robot is a
6mm medium-density fibreboard (MDF) by laser cutting.
Two L-shaped aluminum beams are installed laterally to
reinforce the robot chassis. Compared to actual UTGVs
like the one in Figure 1, the lab-made platform is smaller
and lighter, but it shares the same dynamics principles as
the actual ones since they both rely on the friction between
the continuous tracks and the ground for movement.

The robot is driven by two motors, one on each side.
They are connected to the back wheel to drive the continu-
ous tracks. There are three track wheels on each side, only
the back one is driven by the motor. In the experiments,
based on the motor information, the values of Fmax and
τ̄max are 83.33N and 24.17Nm. The onboard sensors are
a nine-axis IMU and encoders that are preinstalled on the
motor.

The angular velocity of the robot ω(t) is measured di-
rectly by the onboard IMU with the Root Mean Square
(RMS) noise of 0.07◦/s. On the other hand, the linear ve-
locity v(t) is estimated with the Kalman Filter with the in-
formation of wheel speed measured by encoders and robot
acceleration measured by the IMU with the RMS noise of
0.0098m/s2. These noise values are from the user manual
of the sensor. The control laws are implemented by using
an embedded system running on STM32F107ZET6 (STMi-
croelectronics, Switzerland). More precisely, two controllers
(18) and (20) are implemented where two state signals x̂2

and x̂4 are obtained from the observer (17).

Fig. 11. Lab-made experimental platform.

Although the controllers (18) and (20) are designed in
continuous time, it is implemented using a sampling data
structure as shown in (27) where T is the sampling period.
In the experiments, the sampling frequency is selected as
100Hz with T = 0.01s.

A camera-based motion capture system – OptiTrack
(Tracklab, Australia), is used to measure the ground truth
trajectory of the robot with the RMS error of 0.2mm at
a 120Hz sampling rate. The positions are recorded during
the experiment for post-processing.

It is noted that in the implementation of the control
laws, no position information is used.

5.1. Experiment Protocol

The experiment includes two parts: the first part is to de-
sign reference velocities vr(t) and ωr(t) for a given path.
This is consistent with the self-driving framework men-
tioned in Section 1 and the control objective listed in Sec-
tion 2.1.

As shown in Section 2, the first step of this work is
to generate a reference trajectory in the global coordi-
nate (see Equation 1 and Figure 3). Consequently, we use
xref,R(t), yref,R(t) to represent a 2-D reference trajectory
for a fixed time t ∈ [0, Tfinal]. The robot is commanded
to follow a pre-defined trajectory which requires the robot
to run over a 4m rounded corner L-shaped path in 13 sec-
onds. Each of the two algorithms is tested 3 times using the
same trajectory to validate the performance. The trajec-
tory is divided into three pieces, a 1.5-meter-long straight
line, followed by a quarter of a circle with a radius of 0.5m,
and the final piece is also a straight line of 1.5m. As shown
in Figure 12, on each piece of the trajectory, reference ve-
locities vref , ωref are given as the high-level navigation al-
gorithms send step signals to the motion controller [19].
On the straight lines, the reference linear velocity is set to
0.3m/s for 5 seconds on each piece. Reference angular and
linear velocities are set to 0.628rad/s and 0.314m/s on the
curve.
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Fig. 12. Reference velocities for trajectory tracking.

Note that the initial position error of the robot does
propagate along the trajectory since there is no global po-
sitioning system in the experiment platform. In our experi-
ments, we fix the initial position and heading with the help
of the camera-based motion capture system, OptiTrack, to
keep the effect of initial position error to a minimum. In
the future, we will discuss how to deal with initial position
errors without OptiTrack.

In order to test the robustness of the proposed algo-
rithm, three different ground conditions are considered:

Case A Smooth ground (see Figure 13(a)). The tuning
parameters of PI parameters and the proposed
method (ADRC and ESO) are designed by trial-
and-error for the smooth ground to avoid input
saturation from happening. We test the robustness
of two methods using Case B and Case C using the
same parameters of two controllers tuned for Case
A.

Case B Ground with two different friction coefficients (see
Figure 13(b)). Some small obstacles are taped to
the ground at random intervals and in a way that
only the track on one side makes contact with
them. These small obstacles are taped loosely so
that some movements of the obstacles relative to
the ground are allowed, which simulates a slippery
ground condition when the track on either side con-
tacts them.

Case C Ground with scattered small obstacles (see Fig-
ure 13(c)). The obstacles are taped firmly to the
ground, and both tracks are in contact with them.

In Case B, different ground conditions are created for
the tracks on different sides, leading to some discontinuous
friction when the UTGV passes it. Such uncertainty is in
L1 ∪ L∞. Thus our results are applicable. In Case C, both
tracks can have discontinuous frictions. It is noted that in
both Case B and Case C, the uncertainties are randomly
set, and the averaged error is used to evaluate the perfor-
mance of two control laws (PI and ADRC+ESO).

Fig. 13. Experiment setup of Case A, B and C.

The same as the Unity-ROS simulation introduced
in Section 4.2, PMAE is also used to evaluate the path
tracking performance in the experiments. Besides, since the
simplified models (3) and (4) track velocities, the velocity
tracking performance is also evaluated. As these obstacles
are randomly distributed on the ground, it is reasonable
to use average tracking error when tracking the velocities.
Thus given the reference linear velocity and reference an-
gular velocity, the Mean Error (ME) is chosen as the metric
for evaluating the tracking performance on velocities. They
are thus defined as

ē1 =
1

n

n∑
i=1

e1(ti), (29)

ē2 =
1

n

n∑
i=1

e2(ti), (30)

where e1 and e2 are defined in (19) and (21), ti is each
sampled time instant during the measurement. Each ex-
periment is repeated three times. The average performance
is presented.
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For each case, we will compare the performance
between the proposed algorithm and the standard
proportional-integral (PI) controller in terms of ϵ, ē1, and
ē2. The parameters of PI are tuned to be kP,ω = 12,
kI,ω = 6, kP,v = 200, kI,v = 100, where kP,ω and kI,ω are
proportional gain and integral gain for the dynamic system
in (3), kP,v and kI,v are proportional gain and integral gain
for the dynamic system in (4).

The result is presented in Table 3 and Table 4.

5.2. Results and Discussion

The comparison between the proposed algorithm and the
PI controller is presented in the following tables. Here the
computation of ϵ, ē1, and ē2 come from (28), (29), and (30)
respectively.

Table 2 shows that the average PMAE of the three
cases of ADRC ϵADRC = 0.316m, which is 17.17% better
than that of PI ϵPI = 0.382m, showing the effectiveness of
the proposed algorithm.

Table 2. Tracking PMAE (Unit: m)

Case A Case B Case C Average

ϵPI 0.313 0.431 0.402 0.382
ϵADRC 0.238 0.365 0.346 0.316

Next will show the tracking performance for the
planned reference linear velocity and angular velocity. The
linear and angular velocity of the UTGV during the ex-
periment is obtained by using the sliding window approach
on the numerical differentiation of OptiTrack position and
orientation measurements. The step size of the sliding win-
dow approach is chosen to be 10. For three cases, we have
verified that the disturbances are compatible with the sat-
uration bound aforementioned.

One of the design principles is to tune the parame-
ters of ADRC and ESO so that for a given set of ini-
tial conditions, the input saturation will not happen. By
selecting the parameters of ADRC and ESO carefully as
kI,1 = 0.1, kP,1 = 0.85, l1 = 71.34, η1 = 254.47; kI,2 = 0.24,
kP,2 = 30.09, l2 = 71.34, η2 = 254.47 based on the guess of
initial values, no saturation happens.

Table 3. Angular velocity tracking ME. (Unit: rad/s)

Case A Case B Case C Average

ē1,PI 0.0038 0.0260 0.0060 0.0119
ē1,ADRC -0.0043 0.0087 0.0064 0.0064

Table 4. Linear velocity tracking ME. (Unit: m/s)

Case A Case B Case C Average

ē2,PI 0.0233 0.0404 0.0335 0.0321
ē2,ADRC 0.0048 0.0250 0.0193 0.0163

The results in Table 3 show that, in terms of tracking
the angular velocities, PI and ADRC have similar perfor-
mances in Case A and C, while ADRC has better perfor-
mance in rejecting the unexpected slippery in Case B. On
the other hand, the results in Table 4 illustrate that ADRC
demonstrates less error than the PI controller in tracking
the linear velocities in all cases. On average, ADRC could
reduce almost 50% (49.1% and 46.1%) of error in track-
ing linear and angular velocities. These results suggested
that ADRC has better robustness properties as indicated
in Proposition 3.5.

It is highlighted that in this simplified model, two in-
put signals, ω and v, are designed independently. They are
physically dependent on each other, as discussed in [25].
The coupling between them becomes a part of the total
disturbance. The effect of this coupling is thus cancelled
by using ESO and ADRC. Intuitively such a cancellation
might cause unnecessary high gain control input signals.
From our Unity-ROS simulation and experiments results,
it was shown that the proposed method can achieve better
performance compared with the robust controller similar to
ADRC when using a unicycle model [15] (see Table 1) and
PI controller (see Tables 2-4).

6. Conclusion

This work shows that by decoupling the path tracking prob-
lem of unmanned tracked ground vehicles (UTGVs) into
path/motion planning and tracking of reference linear and
angular velocity, the complicated dynamics of UTGVs can
be simplified by two decoupled linear dynamics with un-
known uncertainties. Such a problem formulation makes
the active disturbance rejection control (ADRC) algorithm
applicable, along with extended state observer (ESO). By
introducing the Dini derivative, the proposed ADRC can
handle non-smooth disturbances, which are commonly en-
countered in the mining industry. When the input con-
straints are considered, if the uncertainties are compatible
with the input constraint, our main results show that the
tracking error converges to an ultimate bound. Simulation
results and experimental results demonstrate the effective-
ness of the proposed algorithm.
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