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Abstract

Human’s movement pattern shaping is widely used in neurorehabilitation and

sports training. Recent studies have shown that robotic device has its potential

to become an efficient tool for clinicians to induce this change. To understand

human’s movement, different computational models were proposed and studied to

explain how human resolves their redundancy. Although some arguments are still

existing, the general idea of optimization has been well accepted. Based on these

computational models, the motor learning studies showed that through practice in

the new environment, the reward-based optimization could drive human to search

for a better movement pattern 1) to maximize the performance and 2) to minimize

the motor cost. Leveraging this optimization idea in human motor learning, this

work aims to induce the movement pattern changes in an experimental setup solely

relying on the motor cost without any explicit kinematic error. In this strategy,

the intervention space and adaptation space are decoupled: while the force field

only applies to the hand linear velocity, the adaptation is expected to happen in

the redundant arm joint space (i.e. the swivel angle).

This work, therefore, explores the following topics:

• Investigating the feasibility of inducing human motor adaptation in the re-

dundant space by providing a task space intervention without explicit error

feedback or instruction;

• Evaluating the contribution of a progressively changing goal in this implicit

motor adaptation, assuming that this adaptation may be further promoted

through subtle prompts to explore the cost space;

• Demonstrating a motor cost analysis based on the upper limb kinematics

and dynamics model to validate the relationship between observations and

motor cost.
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Chapter 1

Introduction

The movement of the human body usually involves a high dimensional configura-

tion on a set of coordinates, and it requires a high amount of information processing

capacity [9, 10]. To achieve the movement goal without concentrating on the co-

ordinates of each joint, human is keen to pack the configuration as a stable and

reproducible pattern, namely movement pattern. Movement pattern shaping or

modification is a relearning process to help humans change their learned pattern

to the desired one (i.e. reaching a target with more or less elbow rotation). It is

widely used in neurorehabilitation, physical therapy and sports training.

According to the World Health Organization, 15 million people suffer from stroke

worldwide each year, and stroke is ranked as the second leading cause of death

worldwide [11, 12]. Based on the data from the Australian Bureau of Statistics

2018 Survey of Disability, Ageing and Carers, more than 100 stroke events were

reported in Australia every day in 2017 [13, 14]. One of the most critical areas

affected by stroke is motor skills, usually presenting as unnatural movement pat-

terns or pathological synergies. A typical example of these unnatural movement

patterns is the unnatural shoulder elbow synergy. A stroke survivor who suffered

from limited upper limb motor function needs to use the trunk to compensate

the limb movement in a reaching task, which not only limits their abilities in

daily life (i.e. limited Range of Motion (RoM)) but be harmful to those over-used

1
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muscles in long-term compensations as well [15]. To improve their abilities and

avoid secondary complications, movement pattern shaping is critical in the neu-

rorehabilitation process. Besides, in physical therapy, movement pattern shaping

which is an alternative option for surgical treatment also plays a critical role in

reducing or avoiding a variety of musculoskeletal pain conditions [16–18]. For ex-

ample, acetabular dysplasia is an orthopedic disorder that, in severe cases, can

lead to fractures of the acetabular rim. The current standard treatment approach

in adults is a Bernese periacetabular osteotomy (PAO), which aims to delay or

prevent the onset of hip osteoarthritis (OA) by improving the coverage of the

femoral head to reduce contact stress. However, a complication rate of 15% can

be expected. Given the invasive nature of the surgery, movement pattern shaping

which is an effective non-surgical treatment option for active adults with mild dys-

plasia is important [17]. Moreover, in sports training, movement pattern shaping

could also help the athlete to avoid pain and improve their performance [19].

In tradition, movement pattern shaping usually relies on systematic verbal instruc-

tion, feedback and tactile intervention from the coaches or physiologists. Recently

some research has focused on systematically study how to influence subjects to

learn a different movement pattern using the physical intervention [4, 5]. In this

case, the robotic device has the potential to become an efficient tool because of its

advantages in accurate measurement and programmable physical intervention.

In the past few decades, robotic devices have been well developed and deployed

in many fields, including medical and sports training applications. The robotic

devices are able to provide consistent physical intervention output as well as ac-

curate measurement compared to humans. Given that the robotic devices are

programmable, the trainers are expected to customize the usage to optimize the

therapy or training outcome based on trainees’ situations. Thus, robotic device

could potentially become an important tool for physiologists and coaches.

The typical robotic devices used in training or neurorehabilitation are exoskeletons

and manipulandum robots [1]. The exoskeleton usually has matched linkage length

and whose joint position aligns with body size. The intervention of exoskeleton is
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applied to joint space directly to shape the joint kinematics. Specific to the upper

limb reaching task, the direct intervention is usually applied on corresponding

joints or limbs directly to shape or assist the arm movement. The manipulandum

based robot usually only has one contact point between the robot and human, and

the intervention is usually applied at contact point to shape the arm movement

indirectly. The indirect intervention has its advantages in the simplicity of the

device mechanical structure and setup, as the exoskeleton requires matched joint

position and aligned linkage length with body size, while the manipulandum is

suitable for different persons and does not require setup change. Specific to the

movement pattern shaping study, it is hard to decouple the robotic contribution

from the movement pattern generated by a human using a direct method with

an exoskeleton, and the observation usually comes with a combination of the

output from both robot and the subject. Moreover, the indirect method with

a manipulandum based robot has better extensibility, as the redundancy of the

human body is seen at different levels, and the movement pattern shaping could

happen not only in joint kinematics but also muscle level, which is hard to be

accessed directly via a robotic device.

The research focusing on movement pattern shaping using robotic devices has been

studied not only with different types of robotic devices but also different types of

instructions that can be mainly categorized into explicit instruction and implicit

instruction. Explicit instruction means subjects understand the real objective is

to shape the movements. In contrast, for the implicit instruction, the subjects are

not aware of the true objective of the experiment. Suppose the study involved a

healthy subject who is capable of changing their movement pattern consciously, it

is essential to have implicit instructions to avoid the influence from subjectiveness

(i.e. the participants trying to cooperate with the research objective) and isolate

the outcome induced by the physical intervention only. In other words, either

direct or indirect methods, relying on explicit instructions or description of the

physical intervention (including an explicit kinematic error), cannot demonstrate

the efficiency of such a physical interaction.
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Most current studies on movement pattern shaping using physical interaction pro-

duced by robotic devices have either direct interventions [4, 5] or explicit instruc-

tions [4, 8]. It is worth investigating the feasibility of inducing the healthy subjects’

upper extremity movement pattern change in a reaching task with an indirect inter-

vention and implicit instructions, which could minimize the trainee’s consciousness

of the movement pattern change induced by the robotic device.

1.1 Problem Statement

The direct methods have the advantage of providing matching feedback at the

corresponding joint and limb. With this approach, subjects can quickly adapt

their movement pattern based on the feedback, even with implicit instructions.

Unlike the direct method, in the indirect method, the intervention space should

be completely decoupled from the adaptation space, and it thus works in the

absence of any kinematic error feedback. The primary problem is thus proposed

that “is it feasible to shape human’s movement pattern in the redundant space by

providing a task space intervention without explicit error feedback or instruction?”.

One of the most significant difficulties lies in the absence of both the kinematic

error feedback and the consciousness, which requires an alternative method to

induce the change. This thesis explores the feasibility of leveraging the motor

control theory in literature to induce the desired movement pattern change in an

indirect and implicit manner. In this work, we investigate this movement pattern

change in an upper limb reaching task, as the human’s upper limb which has more

than sufficient degrees of freedom (DoF) to locate the hand position (known as

redundancy). Such a movement pattern shaping strategy can be potentially used

in rehabilitation of post-stroke patients, physical therapy, and sport training to

improve the outcome.

Given that this movement pattern change can only rely on the change of phys-

ical intervention, some subtle prompts may be helpful, and thus a progressive

goal could potentially promote the outcome in this case. A typical method is
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to utilize a progressive goal in the task, and examples of such approach can be

seen in neuro-rehabilitation, where recovery is not achieved suddenly but rather

progressively [20, 21]. This progressivity could help to improve one’s capabilities

progressively when the limits of those capabilities are unknown. Therefore, the

secondary problem is proposed: “Can the progressivity contribute to the outcome

of movement pattern shaping in this indirect and implicit manner?”

1.2 Contributions and thesis structure

This thesis, therefore, aims to address the problems proposed in the previous

section. Specifically, the three main contributions are

1. Investigating the feasibility of inducing motor adaptation in an upper limb

point-to-point reaching task in the redundant space by providing a task space

intervention without explicit error feedback or instruction, and empowering

simple devices to be used in movement pattern modifications for highly re-

dundant tasks [Chapter 3];

2. Evaluating the contribution of a progressively changing goal in this implicit

motor adaptation [Chapter 4];

3. Demonstrating a motor cost analysis based on the upper limb kinematics

and dynamics model to validate the relationship between observations and

motor cost [Chapter 5].

The thesis is thus structured as following:

In Chapter 2, the existing motor control and motor learning studies are reviewed.

Taking neuroplasticity as the theoretical basis, the rationale for introducing a

progressive goal is presented. At last, the existing strategies and algorithms on

movement pattern shaping with robotic devices are summarized, categorized, and

reviewed in different dimensions. Generally, this chapter identifies the challenges
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of an indirect and implicit shaping approach and proposes the hypothesis based

on motor control and neuroplasticity theories. The subsequent chapters formalize

how these challenges are to be addressed and how the hypothesis is tested.

Chapter 3 introduces detailed experimental methodology on leveraging the mo-

tor control theory to influence the movement pattern in an upper limb point-to-

point reaching task without any explicit instruction or direct physical effect in the

adaptation space. Then the corresponding results are presented, evaluated, and

discussed. The outcomes of this chapter correspond to Contribution 1 and 2.

As the indirect method has an absence in the direct intervention and explicit

instruction, it may be difficult for the subject to adapt their movement to the de-

sired pattern. Thus, in Chapter 4, a new progressively changing goal is deployed

into the shaping strategy introduced in the previous chapter. The detailed exper-

imental methodology on how to involve this progressivity is described, followed

by comparing the results between this new variation and the constant one. Then,

the contribution of the progressivity is evaluated. The outcome of this chapter

corresponds to Contribution 3.

As this indirect and implicit shaping strategy leverage the motor control theory

and relies on an artificial change of the difficulty to finish a task at a certain pose,

analysis of this cost based on an upper limb model is demonstrated in Chapter 5.

This simulation analyzes the cost differences when performing a task in different

poses when exposed to this new environment, and potentially explains the changes

induced by the force field. This analysis aims to help interpret the observations

from the experiment and validate the relationship between the observations and

simulations.

Chapter 6 summarises the major observations in this study and proposes potential

future research directions.



Chapter 2

Background

Human’s movement involves a high dimensional configuration on a set of the co-

ordinates of the relevant articulations in a given task [9] (examples can be seen in

Figure 2.1). At a set of joint coordinates, different mechanical impedance can be

performed by activating muscles at different intensities (i.e. co-contraction of a

pair of muscles to increase stability, and examples can be seen in Figure 2.2) [22].

This high number of degrees of freedom (DoF) can also be found at other levels

(i.e. task level and neural level). This high volume of information requires a high

process capacity [10], but also brings high redundancy for human to perform a

movement.

Figure 2.1: Examples of joint level redundancy in a simple 2D reaching task:
for a given task space position, there are infinite possible joint configurations [1].

7
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Figure 2.2: Examples of muscle level redundancy: for a given joint torque,
there are infinite possible muscle force combinations (Note: diagram indicative

only, does not represent actual muscle configurations) [1].

Figure 2.3: Examples of task level redundancy in a simple 2D reaching task:
for a given task, there are infinite possible trajectories to reach the target [1].
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In this chapter, three main topics are explored. First, an overview of human

motor control is presented to explain how the redundancy is managed and selected.

This is followed by a background in human motor learning to explore how this

redundancy is influenced, and thus, new movement pattern learned. Finally, an

introduction on the studies on influencing this redundancy using robotic devices

is presented.

2.1 Human motor control

The human body provides us flexibility in performing the movement in different

ways, but at the same time, brings a high volume of information to be processed

in each movement. To reduce the amount of information needed to be processed

during each movement, human packed these configurations into a stable and repro-

ducible pattern — movement pattern (also known as synergy) — which allows us

focusing on processing important information without concentrating on the coordi-

nates of each joint and activation of each muscle during the movement. In general,

movement patterns or synergies represent low-dimensional movement information

expressed in a higher-dimensional space of possible activation [23].

The mechanisms of synergy formation at the neural level can be generally classi-

fied into two categories which are “anatomical synergies” and “functional syner-

gies” [23]. The “anatomical synergies”, as the name suggests, stands for multiple

muscles that are activated at the same time based on their anatomical structures.

The information from the motor cortex from the brain will be firstly sent to a

module (i.e. a spinal module) and then be diverged to each muscle. Thus, the

muscles would be activated at the same time. These synergies are usually con-

sidered to be “hard” as the anatomical structure has decided which muscles are

involved in the synergy. In contrast, the “functional synergies” do not have their

dedicated anatomical structures to physically connect to the muscles, providing

human redundancies in completing a task in different ways. The formation of

these synergies are purely based on functional coordination of high-dimensional
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Figure 2.4: Controller and Dynamics representation of the human motor con-
trol system (Reproduce from [1]).

structures and are resulted from learning or training. The movement pattern is

usually referred to this type of synergies which can be altered through training.

From engineering perspective, to produce a functional movement, the human must

resolve this redundancy based on a mechanism or a computational model. To

investigate this mechanism, a varies of studies have been performed in the past few

decades to understand how human performs a well-mastered movement pattern.

In these studies, the complex and nonlinear human musculoskeletal system, which

includes bones, muscles, tendons, ligaments and soft tissues, is usually simplified to

an input/output system from an engineering perspective, as shown in Figure 2.4.

The actuation signal is sent from the Central Nervous System (CNS) (usually

from the motor cortex from the brain and through the spinal module) to the

musculoskeletal system to perform a movement, and then the feedback from senses,

including visual and proprioceptive feedback, is sent back to the brain. After

processing this feedback, the controller (CNS) will construct the new input and

send it to the system. This process is a typical control loop from an engineering

perspective.

However, modelling the human body is complex, and thus simplifications are al-

ways employed depending on the context and purpose of the models. Among

them, the common opinion is that the human performs a movement as the results

of some optimizations, but the form of the cost function and its elements are still

arguable. Different models have been proposed and attempted to model this un-

known cost function, and the common elements used are energy consumption and

efforts [24–32]. They can be generally categorized into three main groups: Cost
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function based on parameters of kinematics, mechanical dynamics, and neurolog-

ical dynamics [1].

2.1.1 Cost function based on parameters of kinematics

A pilot study by Flash and Hogan on the motor cost in a reaching task in a

horizontal plane introduced a cost function based on the jerk (the third derivative

of position) of the hand movement [24]. The results showed that human tries to

minimize the time integral of the square of jerk magnitude in reaching task either

with constraint (i.e. obstacle avoidance during reaching) or without constraint.

The optimum led to an approximately straight line when there is no obstacles

between two points. In a later study on reaching tasks in three-dimensional space

by Kim et al. [25], the human arm was modelled as a two-link seven degree-of-

freedom (DoF) manipulator, and thus the swivel angle [33] (see Figure 2.5 and

Figure 2.6 for details) is redundant to the positioning of the hand. As opposed to

the task space optimization in Flash and Hogan [24], Kim et al’s study shows that

an optimization is required as the problem is redundant — not only in time and

hand trajectory (minimum jerk) but also the joint configuration, when considering

reaching but in joint space. These findings suggested that the optimization resolves

the trajectory and configuration of the arm joints to make it easiest to move the

hand towards the target.

However, this model cannot explain all scenarios in human’s daily life. For ex-

ample, putting a bottle with and without water onto a table following the same

trajectory result in the same kinematics, but the muscle activation as well as the

motor cost is different. In this case, the cost function based on dynamics param-

eters were developed at either mechanical level or neurological level.
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Figure 2.5: Front view of human body, where S, E, W represent joint of
shoulder, elbow and wrist, and the swivel angle is the angle between the SEW

plane and vertical plane through SW.

Figure 2.6: Side view of human body, where S, E, W represent joint of shoul-
der, elbow and wrist, and θ represents the swivel angle
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2.1.2 Cost function based on parameters of mechanical dy-

namics

As mentioned at the beginning of this chapter, the redundancy of human move-

ment is seen at different levels. The kinematics model could describe the movement

completely, but it is not sufficient to define the motor control. Thus, the mechan-

ical dynamics parameters are introduced into the cost function in recent studies

to better explain human motor control. The studies on cost function based on

mechanical dynamics optimizations usually involve parameters on work or torque

at the joint level. In Kang et al.’s work [26], a two-link mechanism with a spherical

joint for the shoulder and a revolute joint for the elbow is utilized, and the swivel

angle (see Figure 2.5 and Figure 2.6) become the only redundant parameter in

this model. For a given task space trajectory, the optimization in this model is

to minimize the work done by the joints and resolve the only redundancy at the

joint level. Similar to optimization on work, the optimization on torque change

is also studied [27, 28]. The model used in these studies is a two-link manipu-

lator with six muscles, and the redundancy is seen at both joint and task level.

The formulation was first proposed in [27] and was revised in [28]. In the revised

study, an updated minimum commanded torque change is also proposed, and it

involves the viscous properties of the muscle, with which the commanded torque

must overcome to move the limb. Comparing the cost functions fully relies on

the kinematic parameters, the parameters of mechanical dynamics could better

explain human behaviors with or without the same kinematics.

2.1.3 Cost function based on parameters of neurological

dynamics

The previous cost functions explained the measurement and observations at kine-

matics and mechanical dynamic level, but in motor control, the input of the muscle

is actually from the controller (CNS) and then sent to each muscle. In this case,

the cost function based on neurological dynamics parameters that can represent
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Reference Parameters Optimization class Resolved redundancies
[24] Jerk Kinematic Task
[25] Swivel angle Kinematic Joint
[26] Work of joints Mechanical dynamics Joint

[27] & [28] Torque change Mechanical dynamics Joint, Task
[29] Effort Neurological dynamics Joint, Task, Muscle
[30] Motor signal Neurological dynamics Task, Endpoint
[34] Motor signal Neurological dynamics Task, Time
[32] Motor signal Neurological dynamics Time

Table 2.1: Summary of cost functions in human motor control literature (Re-
produced from [1])

signals from the brain was studied in the past few years. In Guigon et al. [29], the

muscle dynamics with a second-order low pass filter is modelled as a “neural con-

trol signal” or equivalent to “effort” which is penalized in the cost function. The

optimization was used to describe the reaching tasks in 2D or 3D with or without

wrist joints. This result agreed with the findings from Todorov and Jordan’s [30]

study and Harris and Wolpert’s study [32] on the penalization on the motor com-

mand signal. Similar optimizations on neurological dynamics parameters can be

found in [34], in which the time was not explicitly constraint.

In summary, different computational models have been proposed and attempted

to explain how human resolves their redundancy with or without constraints. All

of them agreed that the motor control is based on optimizing some cost functions,

but the parameters in the cost function are still an open question. The mentioned

literature is summarized in the Table 2.1.

2.2 Human motor learning

In this thesis, the motor control theory is defined on the studies which try to

explain how human performs a well-mastered movement (i.e. a movement pattern

or a synergy), while the motor learning studies try to explain how the human

motor controller changes over time when in a new or changed environment. Motor

learning plays an essential role in human’s life. It helps us to master the skills
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such as walking, writing, using tools. Moreover, the studies showed that it also

plays an important role in neurorehabilitation to help persons with impaired motor

function improve their abilities [35–38].

As the saying “Practice makes perfect”, motor learning helps human to improve

their abilities or performance in a given task. From the engineering perspective,

motor learning is the process that the human motor controller approaches to an

optimum of a cost function to maximize the performance or minimize the effort. It

is noted that it is hard to isolate the motor learning from motor control study, as in

many motor learning studies based on the computational models, the observations

still ended with a repeatable pattern that is thought as an optimum referred to the

optimization behaviour in motor control theory. In this section, motor learning

will be discussed in two parts which are skill acquisition — learning a new task

(i.e. utilise equipment, play new sports) and motor adaptation — adapting to

an external or internal environment change in a known task (i.e. walking on ice,

walking after swimming).

2.2.1 Skill acquisition

When human acquiring new skills, it usually requires human to practice many

times until they master the skills well. From a computational model perspective,

this process is the controller to find the optimum with respect to this new motor

task and configure the patterns. In the studies on the computational model of

skill acquisitions, motor learning is usually indicated or modelled based on the

performance improvement over time, such as time reduction in completing the

task, error reduction in each trial or success rate in completing a task [39–41].

One of the most classic experiments was conducted in the early last century, and

the results showed that the performance improvement in a tracing task obeyed

the math model of the power law [42]. These studies can mathematically describe

the observations in the experiment and provide a prediction on learning behaviour

in a specific task. A framework based on neurological aspects was proposed to



Chapter 2: Background 16

investigate the general learning behaviour that can apply in different tasks [43].

In this framework, motor learning was suggested to be driven by both reward and

error. Similar results were observed in another experiment [44], in which the cost

function was modelled as a weighted sum of kinematic error and effort.

2.2.2 Motor adaptation

The motor adaptation usually refers to the optimum change in motor cost function

due to the internal or external environment change. For example, humans may feel

“heavier” when they walk after long swimming. As the water can provide a “grav-

ity compensated” environment, this environment will change after we are back on

land, and thus we need a short period of time to get used to the environment.

In many motor adaptation studies, the participants are asked to perform a reach-

ing task attaching to a handle-based planner manipulandum device which would

change the mechanical dynamics by providing a force field. This force field can be

a static, stochastic, or random disturbance in the movement. To resolve this unex-

pected change, human would adapt their movement iteratively until they reach a

stable pattern to reject the disturbances [45]. A typical observation in these motor

adaptation experiments is the after effect — the sudden removal of the force field

will usually lead to an “overshoot” in trajectory. Besides the mechanical dynam-

ics, with a specific setup, the apparatus could also disturb the visual feedback of

the human (i.e. an intentional error in visual feedback [46]).

From the computational model perspective, based on the observations, the motor

learning process is usually modelled to a control loop based on the states and

inputs [47–49]. The “state” is usually related to the performance and the “in-

put” or “feedback” are from the sensory system. The combination of “state” and

“feedback” are usually unique to a specific task and cannot be generalized into

different tasks. In this perspective, motor adaptation can be thought of as how

motor control changes in response to disturbances external or internal to the body.
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It is noted that the reference trajectory is not always defined in the motor adap-

tation experiment. If the reference trajectory is provided, the error between the

movement and the reference trajectory will become an indicator of the perfor-

mance [45, 50]. Otherwise, other performance indices (i.e. success rate, com-

pleting time) and the effort will take heavier weight in the cost function [51]. In

Izawa’s work, a zero-mean stochastic force field (changing from trial to trial) was

introduced into the environment, and the results showed that human can take this

uncertainty into account, and adapted their movement to a new optimum. This

optimization was not to cancel all perturbations from the robotic device, but a

process of re-optimization to minimize this “implicit motor costs” which is not

related to the task success and instructions [52].

In summary, the motor learning literature studies that through practice in the

new environment, the reward-based optimization could drive human to search for

a better movement pattern 1) to maximise the performance and 2) to minimise

the motor cost.

2.3 Explicit and implicit learning

In the human brain, two general processes are engaged — the explicit and implicit.

The explicit process is strategic and effortful while the implicit process is more

intuitive and automatic [53]. In human motor learning, both explicit and implicit

processes take place. For example, after shooting a basketball that missed to the

right of the basket, one could strategically aim to the left for the next shoot. But,

it can also happen that if one continues to aim at the basket, the ball would be

progressively close to the center of the basket. The study of explicit and implicit

motor learning has seen a recent surge in interest.

The explicit process can be formed quickly and is directly accessible to conscious-

ness [54], while implicit motor learning is the development of the motor skills



Chapter 2: Background 18

through practices incrementally over time and is not directly accessible to con-

sciousness [55]. Implicit adaptation is thus thought of as a systematic change

occurring without conscious awareness. A pilot study showed that in a complex

fine-motor catching task, uninstructed subjects performed better than explicitly

instructed subjects [56]. Similar results were observed in [57] and [58], suggest-

ing that the explicit strategy significantly attenuated motor learning. Patton and

Mussa-Ivaldi, in later research, also demonstrated that implicit motor learning,

which reinforces the learning process with minimal instructions, no knowledge of,

and little attention to the trajectory, could potentially lead to better retention

compared to explicit motor learning [59]. These results suggested that implicit

motor learning has the potential to be applied in training motor skills in sports

and neurorehabilitation [59]. These results are confirmed by M. Smith et al. in

a series of experiments [60–64]. Significant and prolonged after-effects of implicit

motor learning were observed after the experimental environment had been re-

moved. They suggested that these systematic changes in motor output brought

from implicit motor learning could persist.

However, applying implicit adaptation in neurorehabilitation is still arguable.

Boyd and Winstein showed that the capacity of implicit motor learning might

be impaired in stroke patients. In their experiment, a serial reaction time task

that requires subjects to push the button corresponding to light as fast as possible

is used to test the learning progress. The results showed that stroke patients who

had been explicitly informed of the light sequence performed better than patients

without prior knowledge, suggesting that providing explicit information about the

task could attenuate motor learning deficits [65].

To better understand the relationship between implicit and explicit processes,

Mazzoni and Krakauer designed an experiment to set up a conflict between implicit

and explicit processes by instructing subjects to counter a visuomotor rotation

using a cognitive strategy in a pointing task [66]. The results suggested that

explicit strategies cannot substitute for implicit adaptation and are overridden by

the motor planning system. The newest study also demonstrated that the explicit
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strategy and implicit adaptation could synergize in a dynamic environment, but

implicit adaptation showed to cancel the explicit strategy in a stable or slow-

changing environment [53].

In summary, human motor learning includes both explicit strategy and implicit

adaptation, and implicit adaptation is thought to be a systematic change that

can last longer. Although extending these results to training for stroke patients

in neurorehabilitation is still arguable, the contribution of implicit motor learning

for healthy subjects is confirmed and suggested.

2.4 Movement pattern shaping

In neurorehabilitation, movement pattern shaping plays a critical role to help

the impaired person to re-learn the motor functions. Given the high demand in

movement pattern shaping, especially for upper limb reaching tasks, in various

applications, researchers tried to systematically study how to influence subjects to

learn a different movement pattern using an accurate, repeatable and consistent

physical intervention [4, 5]. A potential solution is to use the robotic devices that

can provide accurate measurement as well as consistent and programmable force

output. The common robots used in the human motor study can be classified into

two types: the exoskeleton and robotic manipulandum [67].

2.4.1 Movement pattern shaping using exoskeletons

Exoskeletons usually have matched joint position and linkage length with the

users, and their kinematics are aligned with the users’ skeletal system. Examples

of exoskeletons include the ARMin [3], the ArmeoPower (Hocoma, Switzerland)

and the ABLE platform [2]. They were able to work in 3D space and can provide

direct kinesthetic feedback at corresponding joints and limb segments.
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Figure 2.7: Rendering of ABLE-7 axis [2].

Figure 2.8: ARMin prototype
[3].

Figure 2.9: ArmeoPower Ex-
oskeletons (Hocoma, Switzerland).

As the exoskeleton is able to influence the specific joint or limb, shaping using an

exoskeleton is well studied. In [4], a shaping strategy, named Time-Independent

Functional Training (TIFT), was developed and deployed based on an exoskeleton

device. The idea is to pre-define a desired shoulder-elbow synergy and a boundary

wall to prevent the subject from moving outside this desired trajectory. The

results showed that after eight training blocks, the trainees are able to perform

the synergy with less blocking, and significant learning was observed. It is noted

that all subjects are healthy subjects who are capable of changing their movement

pattern. And the trajectory boundary made the desired synergy become explicit

to all subjects.
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Figure 2.10: Experiment setup in [4] with ARMin III robot and passive hand
device.

To avoid the influence from subjectiveness (i.e. the participants trying to cooper-

ate with the researchers) and isolate the outcome induced by the physical inter-

vention only, another study was performed by Proietti et al. [5]. In this study, the

shaping strategy, namely Kinematic Synergy Control (KSC), was developed. KSC

is a controller that could generate reactive viscous joint torques applied on multiple

upper limb joints. Similar to TIFT, it has a pre-defined shoulder-elbow synergy,

and the robot would apply the viscous torque to the corresponding joints based

on the difference between measured movement and desired movement. There is

no explicit instruction on movement pattern shaping in this study. Significant

adaptation and after effect were observed in this study. The results suggested

that an implicit adaptation of movement redundancy using a viscous force field

was possible. Regrettably, there is no awareness check after the experiment to

confirm this implicit manner during the experiment. Another difference between

TIFT and KSC is the variety of tasks and generalization. TIFT constrained the

hand trajectory and restrict the movement to one reaching target whereas there

is no such restriction in Prioretti’s work and they observed the generalisation of

the learned coordination to untrained reaching tasks.

The exoskeleton has its advantages on high accessibility, but the drawback is also
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Figure 2.11: Experiment setup in [5] with ABLE exoskeleton.

significant. It requires a perfect alignment for each subject to match kinematics.

Otherwise, it may restrict the user’s movement. This requirement brings a more

complex setup than a manipulandum-based robotic device and thus limits its

applications. From mechanical structure, given the exoskeleton usually has serial

kinematics, high torques are needed at various joints. Thus, the mechanical inertia

is at a high magnitude and distributed along the limb. This is usually called low

dynamic transparency. To resolve problem, the motor used in the exoskeleton

usually has a high gear ratio which reduces the backdrivability of the robot [67]. As

a result, many of the motor adaptation studies involved 2D planner manipulandum

devices to produce the force field.

2.4.2 Movement pattern shaping using robotic manipulan-

dum

The robotic manipulandum requires only one attaching point (which is usually

a handle) to provide the intervention. Examples of manipulandum include MIT

Manus [68] and the MIME [7]. This simpler setup brings a high flexibility but also

prohibits its access to the joints. Due to this nature, the robotic manipulandum is

usually used to investigate the sensorimotor learning in end effect position control

or shape human’s task space trajectories [37, 69–73].

Thus, for movement pattern shaping at the joint level, limited studies were per-

formed. A pilot study was seen in [8]. In their study, TIFT (see 2.4.1) was

deployed on the Force Dimension Delta-6 manipulandum-based robot with 6 DoF,

but only three positional axes were active during the experiment. Three healthy

subjects were required to move with the desired pattern while attached to the
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Figure 2.12: MIT-MANUS [6]. Figure 2.13: MIME workstation
with PUMA-560 robotic arm in a

therapeutic exercise [7].

robot device. Based on the joint position feedback from Kinect (a vision-based

sensor to measure the joint angle), the robot would block the movement if the

shoulder-elbow synergy was not desired. The results suggested that this method

could encourage specific movement strategies. However, as mentioned in the pre-

vious section, the required pattern is made explicitly clear to subjects, limiting

the conclusion drawn from the study. In another study, Valdes et al. [74] also used

indirect force feedback with a similar objective. In their study, a force field at

hand as a function of trunk compensations was shown to be able to reduce the

trunk compensation in stroke survivors when doing a one-dimensional reaching

task. This demonstrates the feasibility of shaping human’s movement pattern in-

directly, even if in that case, the force field was coupled to explicit instructions

and feedback to the subjects.

Manipulandum device has a simpler mechanical structure and more straightfor-

ward setup compared with exoskeleton. Also, with the manipulandum-based robot

setup, it is possible to fully decouple the intervention space (i.e. the hand task

space) in which the intervention is applied from the motor adaptation space (i.e.

the redundant arm joint space). With this method, the force to be exerted by

the robotic system is not required to match the adaptation space, and so it has

the advantages of simplicity and generality of application (i.e. a handle-based

manipulandum device can be used to induce a motor adaptation expressed at the

joint level, not physically controlled). In addition, because the adaptation space
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Figure 2.14: Experiment setup in [8] with DELTA-6 manipulandum robot.

is decoupled from the intervention space, the adaptation is purely driven by the

subjects, and not a combination of the robotic and the subject inputs. Indeed,

decoupling the adaptation space from the intervention space ensures that the sub-

jects actually learn to produce the motor command required to achieve the task

and not a complement to the force field. This indirect approach might thus be

relevant in neuro-rehabilitation scenarios where re-learning of correct and efficient

movement patterns plays an important role [75].

2.5 Summary

In summary, different computational models were proposed and studied to explain

how human resolves their redundancy with or without constraints. Although some

arguments are still existing, the general idea of optimization has been well ac-

cepted. Based on this process, human can adapt their movement to an optimized

pattern with some cost function that is related to performance and effort. Looking

at human motor learning from the engineering perspective, it studies that through
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practice in the new environment, the reward-based optimization could drive hu-

man to search for a better movement pattern 1) to maximise the performance

and 2) to minimise the motor cost. Leveraging this idea, in the movement pat-

tern studies, the goal is usually to influence human’s movement towards the desire

through interventions from robotic devices. The studies on movement pattern

shaping in a direct manner using exoskeleton devices have been studied in both

explicit and implicit manner, and the outcomes are significant. However, studies

on indirect shaping using manipulandum device at joint level is limited. It is worth

investigating its feasibility, given its advantages.

As such, this thesis will explore the feasibility of inducing human movement pat-

tern change indirectly and implicitly by leveraging the motor control theory. Thus,

a task space intervention that aims to change human motor cost only will be

provided to shape the joint space (redundant space) movement pattern without

explicit error feedback or instruction. This indirect shaping strategy could em-

power simple devices (such as manipulandum) to be used in movement pattern

modifications for highly redundant tasks. As suggested from the principle of neuro-

plasticity, progressivity will be deployed in the force field in the second experiment

to explore the contribution of a progressively changing goal in this implicit motor

adaptation. Finally, a computational model associated with the experiment data

will be constructed to examine the motor cost change and explain the observa-

tions.
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Inducing human motor

adaptation solely relying on

motor cost

In Chapter 2, the advantages of shaping human’s movement pattern in an indirect

and implicit manner was introduced. To induce a desired movement pattern, a

task-space force field which can encourage the motor adaptation in redundant

space is to be designed leveraging the motor control theory. Recent works showed

that human motor control involves the optimisation of a motor cost consisting

of the combination of two components: one related to performance/error and

one to energy/effort as highlighted in [44]. As summarized in Chapter 2, through

practice in the new environment, the reward-based optimisation could drive human

to search for a better movement pattern 1) to maximise the performance and 2)

to minimise an “implicit motor cost” (here defined as the motor cost not related

to the task success and/or instructions) [52].

This chapter explores the idea of driving indirect and implicit motor adaptation

solely relying on the second component: the energy/effort. Specifically, the adap-

tation relies on the exploration of the cost space by the subject (through natural

26
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variability in performing the task), which is expected to drive the indirect adap-

tation towards a new optimum instinctively. At the same time, the intervention

is only applied at the task space without perturbing the adaptation in redundant

space. This adaptation is hypothesised to occur without any explicit kinematic

error feedback — instead, relying only on the subjects’ attempts to minimise effort

in performing the task, as perceived by their proprioceptive feedback. Thus, the

approach introduced in this chapter is designed to be in an indirect and implicit

manner: with the subjects having no intervention to contribute or prevent their

movement in redundant space and with the subjects having neither instruction

nor indication regarding the preferred movement.

This approach, named Indirect Shaping Control (ISC), has been previously ex-

perimented with five subjects by Fong et al. [76]. Results showed that healthy

subjects adapted their movements unconsciously, however, the resulting changes

to the subjects’ movements were not always in the expected way. Two potential

influences were noticed: a) physical contact point was at the center of the wrist; b)

the original movement pattern was modelled in a linear relationship on constant

mean value. The first factor may potentially prevent a fully free movement around

the swivel angle for the subjects due to this physical constraint at the wrist. And

the second factor may have led to a more artificial linear swivel angle change along

the trajectory. As an extension of [76], in this project, the ISC strategy is modified

to be applied at hand rather than wrist, and in the form to better respect to the

natural movement pattern.

To test this hypothesis, a three-dimensional reaching task was selected. During the

intervention phase, a force field, which opposed to the hand movement and only

increased the movement effort, was applied at the hand. The amplitude of this vis-

cous resistance was set as a function of the arm swivel angle (see Figure 3.2). The

adaptation was thus expected to happen in the arm joint null space, parametrised

by the swivel angle. Intervention effect was thus measured as the increase of the

swivel angle during the intervention phase. Observations on a potential after effect

were also performed using the same metric.
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3.1 Experimental methodology

To validate the effectiveness of ISC, an experiment is thus designed. In this ex-

periment, the hypothesis is that it is feasible to induce motor adaptation in the

redundant arm joint null space by providing a task space intervention without ex-

plicit error feedback nor instruction using ISC approach. To test this hypothesis, a

three-dimensional reaching task was selected. During the intervention phase, ISC

is applied at hand. The amplitude of this viscous resistance was set as a function

of the arm swivel angle as introduced in the previous section. The adaptation was

thus expected to happen in the arm joint null space, parametrised by the swivel

angle. Adaptation effect was measured as the increase of the swivel angle during

and after the intervention phase.

θgoal(i) is set to a constant value of 10◦ across all iterations in the intervention.

A final goal of 10◦ increase was empirically selected after preliminary testing, to

be both large enough to be observable as well as outside normal variability of

movement and small enough to keep the change not noticeable by the subjects.

3.1.1 Participants

Five female and five male subjects (age: 23.7±4.0) participated in this experiment.

All of these subjects were right-handed and did not suffer from any impairment in

their upper-limb motor functions in past two years.

This experiment was approved by the University of Melbourne Human Research

Ethics Committee (#1749444), and an informed written consent was received from

all subjects.

3.1.2 Task design

In this experiment, the objective of the robotic intervention was to increase the

swivel angle (see θ on Figure 3.2) with which the subject was performing reaching
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tasks using his/her dominant hand.

Participants were required to sit on a fixed chair and repeat a reaching movement

from their lap to a touch screen positioned in front of them as shown on Figure 3.1.

The targets were shown on the centre of the screen and subject was asked to touch

the target at his/her own pace. The location of the touch screen was normalised

for each subject such that the height of the upper edge of the touch screen aligned

with his/her chin and that his/her metacarpophalangeal joint was touching the

screen when they fully extend his/her arm. Within this setup, when the subject

touches the button on the screen, his/her arm was not fully extended.

During the experiment, in order to further encourage an implicit learning method,

a quiz game was designed to distract the subjects from the exact objective of the

study. The quiz User Interface (UI) was displayed on the touchscreen with the

reaching target corresponding to the quiz answers. Answer buttons were assigned

randomly and setup closely to one another (within a 5 cm radius) to minimise any

target position effect. No time limitation nor timing instructions were imposed

to participants who were performing the reaching task at their own comfortable

pace.

The swivel angle was selected for its simple representation of the arm null-space

on which the robotic device is incapable of direct physical effect (the EMU, dis-

played on Figure 3.1, being only able to apply 3D forces at the hand) and which

configuration does not produce any kinematic error in reaching tasks. The swivel

angle also accounts for a large part of the motor cost during reaching movements:

the gravitational load applied to the arm (and so shoulder joints) increases while

the elbow raises outside of a parasagittal plane.

3.1.3 Apparatus and measurements

In this experiment, the EMU, a three-dimensional end-effector based rehabilita-

tion robotic device [67], was used to generate the ISC force field. The EMU
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possess three active joints, with the ability to produce linear forces in the three

directions, and is terminated with a passive ball joint unit, allowing free, uncon-

strained rotations. The subject’s hand held the handle of the device, attached

to the passive unit, with their wrist strapped, preventing wrist flexion/extension

and abduction/adduction. This configuration allows the device to produce a force

interaction in 3D whereas the orientation of the forearm is left free to rotate, thus

producing no torque around the swivel angle axis (see [77] for a detailed kinematic

analysis).

Figure 3.1: The experimental setup with the EMU manipulandum, the loca-
tion of the three positions magnetic sensors and the swivel angle representation

(θ), where v is an absolute vertical unit vector

TrakSTAR 3D Guidance Magnetic Sensors (Ascension Technology Corporation,

USA) was used to measure the subjects’ shoulder (S), wrist (W ) and elbow (E)

positions, which was subsequently used to calculate online the swivel angle as

follows.
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Figure 3.2: The schematic of the task with the swivel angle representation
(θ), hand velocity (ẋ) and corresponding viscous force field (fvis (θ, ẋ)).

Vectors
−→
SE and

−−→
SW were calculated using S, E and W positions and a normal

vector to the SEW plane was expressed as:

narm =

−→
SE ×

−−→
SW∥∥∥−→SE ×−−→SW∥∥∥

2

, (3.1)

where ‖◦‖2 denotes the L2 norm.

Then, assuming the subjects maintained their trunk upright, the swivel angle can

be calculated as [26]:

θ = arcsin (narm · v) , (3.2)

with v an absolute vertical unit vector.

The sensors position have an RMS error of 1.4mm. This results in an RMS swivel

angle measurement error of 0.8◦ in the worst configuration.

The EMU’s real-time controller (a sbRIO-9637, National Instruments Corpora-

tion, USA) was connected to a laptop which performed the force field computation
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based on the swivel angle value and displayed the interface on a touch screen. All

software was customised and written in LabVIEW (National Instruments Corpo-

ration, USA) at a 20Hz sampling rate.

Additionally, the swivel angle as well as the sensors positions and velocities (ob-

tained through differentiation) were recorded during the experiment for post pro-

cessing.

3.1.4 Revisit of Indirect Shaping Control (ISC)

Indirect Shaping Control (ISC) was previously introduced in [76]. In this pilot

work, the movement pattern was characterised by the swivel angle, and a viscous

field was applied to the subject’s hand movement, as a function of the current

swivel angle value. This viscous field was designed in such a way that the further

the swivel angle θ is from the desired value θd(·, ·), the more the force field in-

creases the resistance. Such a setting artificially increases the movement cost (by

increasing the viscosity), the further away the movement pattern is from a desired

value.

In order to take into account inter-subject natural movement variability, the de-

sired swivel angle θd(·, ·) is designed based on each subjects’ original swivel angle

over the course of movement, identified during natural movements. For each user,

this reference θo(d) was identified as a third-order polynomial of the distance to

the reaching point (d) by fitting the data using a bisquare method.

For each iteration of the intervention i, an alteration goal of the swivel angle,

denoted θgoal(i) was defined.

In order to not influence the static posture of the subject at the initiation of

movement (d = d0), θgoal(i) was linearly increased along the movement reaching

path, starting with the subject’s original posture and ending with the maximum

change for the given iteration (d = dmax).
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Figure 3.3: Front view of human body, where the swivel angle is the angle
between the SEW plane and vertical plane through SW.

Namely, the personalised desired swivel angle θd(d, i) in iteration i and at a distance

d from the starting point was defined as:

θd(d, i) = θo(d) +
d

dmax

· θgoal(i) , (3.3)

where dmax is the distance from the starting point to the target.

For simplicity of notation, θd(·) = θd(·, i) or θd is used in this thesis when no

confusion arises.

The force field thus relies on a swivel angle (the angle to represent the elbow

rotation, see Figure 3.3 and Figure 3.4 for details) difference between θd and mea-

surement θ. The force applied by the device at the subjects’ hand is calculated

as:

fvis =

 −bi · bk · (θd − θ) · ẋ , if θd > θ

0 , otherwise
(3.4)

where
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Figure 3.4: Side view of human body, where θ represents the swivel angle

• fvis is the vector of the force applied at the end effector;

• ẋ is the vector of the real-time hand velocity in m · s−1;

• θd − θ is the real-time difference between a desired swivel angle θd and the

measured swivel angle θ (in degrees);

• bi is a scalar factor changed according to the current iteration i and which

aims to introduce and remove the viscous field gradually during the inter-

vention. In all experiment in this thesis, bi increases linearly from 0 to 1 in

the first 15 iterations in the intervention and decreases linearly from 1 to

0 in the last 15 iterations in the intervention. bi remains at 1 in the other

iterations;

• bk is a constant tuning gain to make the force field within a reasonable

range and has been empirically set to 5000N · s · (m·◦)−1 in all experiments

presenting in this thesis for all subjects.
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Figure 3.5: Progression of bi over the iterations
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Figure 3.6: Desired swivel angle θd (see Equation 3.3) over reaching distance
in ISC: the black solid line an example of θo (in PRE); the red solid line the

corresponding θd in the Intervention phase

3.1.5 Experimental protocol

The protocol was divided into three successive phases1 detailed below and sum-

marized in Table 3.1.

Table 3.1: Experimental protocol

Phase Free PRE INT POST Free
Force field N.A. Transparent ISC Transparent N.A.
Iterations 1-25 26-50 51-150 151-175 176-200

1Two additional phases of 25 reaching tasks each without the robotic device where also
performed prior and after these three phases and are not analysed here.
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1. PRE phase, where subjects performed 25 reaching tasks while strapped to

the robot. In this phase, the robot is set in transparent mode, compensating

only for its own weight and friction in both vertical and planar directions,

in order to minimise its influence on the subject. The movements recorded

in this phase are used to obtain a reference for each subject.

2. INTervention phase, where subjects remained strapped to the robot and

performed 100 reaching tasks. The robot applied the “ISC mode” in addition

to its own gravity and friction compensation.

3. POST phase, identical to the PRE phase, where subjects performed 25 reach-

ing tasks with the robot set in transparent mode. This phase was included

to measure the washout effect.

4. FREE phase, where subjects performed 25 reaching tasks without the robotic

device prior and after these three phases.

Subjects performed a total of 200 movements (including 50 movements in free

phase, see Table 3.1). In order to reduce the potential influence of muscle fatigue,

subjects were asked to take at least a thirty-second break every 20 iterations and

could request additional rest at any time.

Subjects were not given any instruction about the different phases of the exper-

iment and were blind to the objective of the experiment and to the effect of the

robotic force field. Making the subjects unaware of the objective is required here

to minimise to the best extent possible that no active or conscious behaviour is

influencing the results.

At the end of the experiments, to test their awareness of the effect of the robotic

device, all subjects were asked to take a questionnaire which consisted of the

following questions:

• Question 1: Did you feel the robot applying any force?
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• Question 2: Do you think the robot was influencing your movement in a

particular way? If yes, what was that influence?

• Question 3: Do you think you changed the way you moved during the ex-

periment? If yes, how did you change the way you move?

3.2 Results

Results are presented in three parts, respectively presenting the subject awareness

of the robotic effect, the intervention effect and the after effect as measured by the

change in swivel angle, and the change in hand velocity.

3.2.1 Questionnaire results

According to answers to the questionnaire, all of the subjects felt a force field

was applied by the device (Q1). No subject suspected that the device influenced

them in a particular way (Q2). All subjects did not feel that they changed their

movement patterns (Q3).

3.2.2 Intervention outcome and after effect

To evaluate the effect of the intervention and after effect, the primary measure

is the swivel angle change in the experiment. Only the angle at the end pose

(θ (dmax)) was used to represent the swivel angle of the movement in the analysis.

To investigate the true change of the swivel angle induced by the intervention as

well as after effect in the POST phase, the average value θo(dmax) recorded during

the PRE phase for each subject was subtracted to the measures obtained in each

subsequent phase. This swivel angle change was recorded as ∆θ (dmax).

For each individuals, this average measure is thus reported:
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• during the PRE phase, used as a baseline;

• during the INT phase (iterations i = [66− 135], in which without effect of

bi), to investigate the immediate effect of the ISC compared with baseline

for each individuals;

• during the POST phase, to investigate the after effect of the ISC compared

with baseline for each individuals.

The results are thus reported on intervention effect by comparing at group level

with the mean swivel angles, θ (dmax), of each individuals in PRE and INT phases

using a Wilcoxon Signed-Rank Test [78].

Identically, the after effect is reported by comparing at group level with the mean

swivel angles, θ (dmax), of each individuals in PRE and POST phases using a

Wilcoxon Signed-Rank Test.

The post-processing of the data and statistical analysis were performed using

MATLAB 2019b (The MathWorks Inc., USA).

The changes of mean swivel angle during different phases for each individual sub-

ject is shown in Figure 3.7.

Table 3.2: Within-group comparisons for intervention effect and after effect

Phases PRE-INT PRE-POST
Difference +4.9◦ −0.3◦

p value 0.002 0.6953
Test Statistic (W) 0 23

The evolution of ∆θ (dmax) is shown in Figure 3.8. The intervention effect is

significant (p = 0.002), and the mean changes were 4.9◦ in INT phase as reported

in Table 3.2. Additionally, a similar analysis performed not at end point, but

midway through the movement (at d = dmax/2), shows a swivel angle increase of

1.9◦ confirming that the same trend exist through the reaching movement.

As the force field is progressively removed (from iteration 135), no after effect

is observed, with a fast return to the baseline value. No significant differences
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Figure 3.7: Mean swivel angle measure for each individual subject in the CG
Group in the 3 phases of the experiment.

are found between PRE and POST phases (p = 0.70), with mean differences of

−0.3◦, as reported in Table 3.2. Figure 3.7 shows that this behaviour is relatively

consistent among subjects, with only one individual not returning to their baseline

behaviour (Subjects #9). Additionally, it can be seen on Figure 3.8 that subjects

already started to return towards their baseline movement pattern during the

phasing out of the force field (iterations 135 to 150).

3.2.3 Hand velocity

A secondary metric φ was introduced to evaluate the potential effect of the force

field on subjects’ movement “strategy”. Indeed, given that the proposed addi-

tional movement cost introduced by the ISC is based on the movement velocity, a

change in the velocity could explain a different optimisation from the subject to

counteract this additional movement cost. The average velocities of each iteration,
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‖ẋ{PHASE}‖2, were obtained after position differentiation, and the average over the

different phases was then calculated. A coefficient of velocity change between PRE

and comparative stage of INT phases was then obtained for each subject as:

φ =

(
‖ẋINT‖2 − ‖ẋPRE‖2

)
‖ẋPRE‖2

, where ‖ẋPRE‖2 6= 0 . (3.5)

Similar to the intervention outcome and after effect reported in Section 3.2.2, the

hand velocity change is reported by comparing at group level with the mean values

of φ of each individuals in PRE and INT phases using a Wilcoxon Signed-Rank

Test.

The velocity change ratio φ (defined in Equation 3.5) is shown on Figure 3.9. A

reduction of the average hand velocity of 20% was observed in both the INT and

POST phases.

Figure 3.8: Swivel angle evolution for all subjects (sliding average with window
width of 5 samples). The blue solid line shows the mean outcome in each
iteration for all subjects. Shaded areas represent the interquartile range after
rejecting outliers (three-sigma rule). Dotted lines shows the different phases:

(a): PRE phase, (b): INT phase, (c): POST phase.
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Figure 3.9: Velocity changes ratio. The box plot shows velocity changes ratio
φ in the INT and POST phases. The bottom and top edges of the blue box
indicate the 25th and 75th percentiles respectively while the red + shows the
outliers. Inside the blue box, the red solid line shows the median and the red

star shows the mean value of the data set. #: p ≥ 0.05.

3.3 Discussion

3.3.1 Effects of ISC

A significant change in movement pattern was observed per their swivel angle in the

INT phase. Although the changes remain of relatively small amplitude (4.9◦) this

demonstrates the possibility that motor behaviour can be influenced in a desired

“direction” (i.e. an increase of the reaching swivel angle) without direct physical

intervention and without explicit instructions given to the subjects. The observed

adaptation is thus happening in the absence of any kinematic error, as it is purely

dependant on the arm-null space kinematic and completely implicit (no subject

realised the objective of the force field). This suggests that implementation of force

field solely based on an artificially designed optimum can lead to an adaptation.

In [52], Izawa et al. stated that “[...] motor control in a novel environment is

not a process of perturbation cancellation. Rather, the process resembles reop-

timization: through practice in the novel environment, we learn internal models
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that predict sensory consequences of motor commands.” In their view, the goal

of adaptation is not to cancel the error but to maximize performance in that en-

vironment. In their study, they showed that in a velocity-dependent force field

that perturbs the hand orthogonally to the direction of a reaching movement, the

human would adapt their reaching trajectory in a curved path and not a straight

line to maximize the performance. And when the force field becomes stochastic

(changing from trial to trial), the path plan could be reoptimized and take into

account this uncertainty. Similar adaptation is observed in a 3D force field in this

experiment — the adaptation of the subjects to the indirect force field falls within

the reoptimization described by Izawa et al. [52]. In this study, the novel environ-

ment was made of an indirect force field altering the effort space, and subjects did

explore this effort space and reoptimize their behaviour accordingly.

It is important to note that every subject demonstrated a change in the expected

“direction”. These results strengthen the ISC approach introduced by Fong in [76]

where limited results were presented. The initial experiment and this study shared

the same apparatus and setup but with two differences which may explain the

different results. The first change is that in the previous work, the velocity mea-

surement and physical contact point were at the center of the wrist. The present

work changed this to the center of the hand. Thus, the previous version potentially

prevented a fully free movement around the swivel angle for the subjects, due to

this physical constraint at the wrist. The second change is the measurement of

θo which is here modeled as a polynomial instead of taken as a linear relationship

on constant mean value in the previous work. Thus, the previous work may have

led to a more artificial linear swivel angle change along the trajectory, while the

current implementation better respects the natural movement pattern reference

along the path, only influencing a shift of this value.

No after effect can be observed, suggesting that the subjects quickly came back

to their original movement pattern when the force field was removed. Despite the

application of an implicit approach, supposedly leading to better retention [59], in

this study, after effect was not expected to happen, as the desired exaggerated new
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movement pattern leads to a higher cost when the robotic force field is removed,

due to the existence of gravity. Subjects thus do not gain any benefit from this

new movement pattern when they are moving without the artificial force field.

This minimal after effect differs from the results observed by Proietti et al. where

a direct, but implicit, movement shaping is provided with an exoskeleton [5]. In

their work, a direct torque was applied on the corresponding joints to shape the

joints’ coordination. The retention observed in their experiment could be due to

the larger effect observed on their subjects at the end of the INTervention phase,

leading to a longer washout.

Additionally, in [5], the subjects’ awareness was not checked after the experiment

making it difficult to fully conclude on whether the subjects voluntarily adapted

to the force field, or were conditioned to move in a certain way when placed in the

test setup.

3.3.2 Motor cost compromise

In ISC, the artificial additional cost introduced is in the form of a viscous force

opposed to the movements in the direction of the hand’s velocity, with a higher

velocity causing higher viscous force magnitude. The viscous force field is pro-

portional to both swivel angle error and velocity (as per Equation 3.4) and the

subjects could thus choose to comply to the swivel angle requirement, to reduce

their reaching velocity, or a combination of both, in order to reduce the intensity

of the force field. In Figure 3.9, it can be clearly seen that subjects slightly re-

duced their velocity magnitude to avoid the resistance in completing the task in

the majority of iterations.

Due to the nature of the task, the natural motor cost is here dominated by the

gravitational load, which is static by essence: a higher swivel angle will lead to

a larger load on shoulder muscles for a given posture. A slower movement will

require additional energy, as the load will have to be sustained for a longer time.
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But limiting the speed of movement could reduce the movement cost from robotic

device which is velocity dependent. The cost introduced by the ISC thus coun-

teracts this effect and a compromise between these two costs is expected to be

found by the subjects. This can explain the reduction in the hand velocity and

the compliance of the subjects to the modification of their swivel angle, suggesting

an exploration of the cost space by the subjects.

Additionally, it could be seen that the average swivel angle “reached” by all sub-

jects is below the shaping goal at which the artificial component in the cost function

could become zero, also suggesting a cost trade-off between the gravitation and

the artificial force field.

3.3.3 Subject awareness

From the questionnaire results, the subject awareness can be evaluated. All par-

ticipants were asked to focus on finishing the quiz and reaching tasks. As all

participants did not realize either the actual effect of the robotic device or their

movement pattern change, the training can be seen as truly implicit.

It is important to note that here the healthy subjects are physically easily capable

of complying with the objective. If the subjects were explicitly described the

desired movement pattern as well as the study objective, the results would be

affected by how much the subjects want to cooperate with the researchers. In

fact, the implicit learning approach, even if suspected to lead to better retention,

may not be possible or practical in a neuro-rehabilitation context where subjects

may have little movement variability of movement to even explore the cost, and

thus comply to it [79]. In any case, if the shaping component of the training is left

implicit, it is important, as suggested in [5] to keep another reward mechanism.

This mechanism can be task, and not shaping, related and classically in the form

of gaming and/or a score to ensure motivation [80] as well as favour dopamine

release to promote brain plasticity [81].
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3.3.4 Translation to neuro-rehabilitation

The chosen task and problem in this study aims to be relevant to motor neuro-

rehabilitation of the upper-limb, where pathological synergies retraining and move-

ment correction play an important role towards functional recovery. This study

aimed to provide a method in adapting human’s movement pattern by adding an

indirect force field. The results demonstrate the feasibility of changing the joint

space coordination by using a manipulandum device by adding an artificial task

space cost. Indeed, compared to the previous work using exoskeletons [4, 5], this

approach allows the use of much simpler and accessible devices for the same ob-

jective. But despite cost and practicality, the indirect approach could also have

the additional benefit of actually requiring the subjects to completely adopt the

movement pattern by not directly physically constraining it. The effect that is

observed in the redundant space to be shaped is purely driven by the subjects,

and not a combination of the robotic and the subject inputs as in the case with

the KSC implementation [82].

A similar setting to ISC, using a force resistance at the hand as a function of

trunk compensations has also shown some positive effect in reducing compensatory

movements with individuals with hemiplegia [74]. The effect was shown to be

larger than classically using trunk restraint which suggests a possible translation

of our proposed method to this application with the opportunity to generalise it

to more complex movement pattern correction.

3.4 Summary

Indirect Shaping Control (ISC) is an approach to influence redundant space move-

ment patterns indirectly and implicitly based only on cost/effort applied in task

space. The experimental validation results show that all subjects but one did

adapt their movements towards the desired movement pattern (as measured by
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the swivel angle) when trained using the robotic manipulandum, but no after ef-

fect was observed. These results extend the previous preliminary conclusions on

such an approach and suggest that an alteration of movement patterns using an

indirect motor cost approach is feasible. It would be expected that retention might

be observed only at the condition that the learned movement pattern provides an

actual follow-up benefit to the subjects. Although all but one subjects adapted

their movements, the average change was only around 5◦. To improve this limited

outcome, a new variation of ISC will be introduced in the next chapter.



Chapter 4

Contribution of progressivity in

indirect shaping control

In Chapter 3, a constant goal was set during the intervention phase to induce an

indirect movement pattern change. Given this change fully relies on the change of

motor cost induced by an artificial force field, it may be difficult for the subjects to

find the optimum with an implicit and indirect method. Assuming that this adap-

tation may be further promoted through subtle prompts to explore the cost space,

a variation of the approach with a progressive goal could be potentially helpful. A

progressively changing goal is usually used to improve one’s capabilities gradually

when the limits of those capabilities are unknown. Examples of such an approach

can be seen in neuro-rehabilitation, where recovery is not achieved suddenly but

rather progressively [20, 21]. Exercises and tasks are thus defined progressively to

encourage motor control changes. In this process, clinicians usually set a reach-

able goal and move it further and further to favour changes. This applies either

to practiced tasks of increasing difficulties (e.g. Range of Motion or finer motor

control) but also to the expected changes in motor behaviours (movement quality,

limitation of over-recruitment, movement smoothness or movement speed).

This progressively changing goal takes its theoretical basis in physiology. Neuro-

plasticity studies show that the changes in neural configuration can happen only

47
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when the inputs to the neurons circuitry — and so the learning steps — falls

within their anatomical available resources. This thus limits the learnable step-

size but does not ultimately prevent large scale changes if they are presented pro-

gressively [81]. The brain physiology studies show that exposing to a progressively

changing environment, the primary midbrain source of noradrenaline is enduringly

up-regulated, which resulted in the increase of the baseline level of excitability in

the cortex. And it can positively amplify the plastic change [83–85]. In this case,

the repetition and overlap in training are necessary to achieve the optimizations.

Based on this principle a new variation of ISC is designed and presented in this

chapter.

4.1 A new variation of ISC

The general idea of this ISC was still a viscous field applied to the subject’s hand

movement as a function of the current swivel angle value. The viscous force field

followed the same algorithm as introduced in Equation 3.3 and Equation 3.4. The

main difference between these two variations of ISC was that θgoal(i) was set to a

constant value across all iterations in the intervention in the previous experiment

and linearly increased from 0 to θgoal(i) in the first half of the intervention and

kept constant at θgoal(i) for the second half of intervention (see Figure 4.1). To

differentiate these two different variations, the ISC applied in the previous experi-

ment is named Constant-ISC (C-ISC), and the experiment results are presented as

Constant Goal (CG) Group. The new variation of ISC is now named Progressive-

ISC (P-ISC), and the corresponding subjects and results are in Progressive Goal

(PG) Group.

4.2 Experimental validation

Here, a new hypothesis that a progressive goal would lead to a larger movement

pattern modification than a constant goal will be tested. The new test group
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Figure 4.1: (a): Desired swivel angle θd (see Equation 3.3) at the end pose
(d = dmax) over iterations for C-ISC and P-ISC. (b): desired swivel angle θd
over reaching distance for C-ISC and P-ISC with: the black solid line an ex-
ample of θo (in PRE); the red solid line the corresponding θd for the second
half of the INTervention applied in the Progressive Group and the entire IN-
Tervention phase applied in the CG Group; and the red dashed lines examples

of intermediate θd in the first half of INTervention phase in the PG Group.

(PG Group) shares the same experiment setup except for the shaping goal of the

force field, which was a constant number of 10◦ in the previous group (CG Group)

and a progressively changing goal in PG Group. Thus, the results presented in

Chapter 3 can be a control group results to compare with the results collected in

this group. A consistent evaluation of two variations of the ISC is thus performed

where the force field encourages a change in the redundant space without any

explicit instruction nor direct physical effect in the adaptation space.

Note that θgoal was the same (10◦) for both groups in the second half of the

intervention and that bi function was used in both groups for consistency and to

avoid to raise subject’s awareness at the removal of the force field.

4.2.1 Participants

As multiple tests may influence the consciousness on the objective of this exper-

iment, to keep the experiment in a fully implicit manner, ten new subjects were

invited. Five female and five male subjects (age: 24.2 ± 1.7) participated in this

experiment. All of these subjects were right-handed and did not suffer from any

impairment in their upper-limb motor functions in past two years.
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This experiment was approved by the University of Melbourne Human Research

Ethics Committee (#1749444), and an informed written consent was received from

all subjects.

4.2.2 Task design

This experiment shares the same task design as the previous experiment. The

objective of the robotic intervention was to increase the swivel angle (see θ on

Figure 3.2) with which the subject was performing reaching tasks using his/her

dominant hand. Participants were required to sit on a fixed chair and repeat a

reaching movement. During the experiment, the same quiz game was designed to

distract the subjects from the exact objective of the study. No time limitation

nor timing instructions were imposed to participants who were performing the

reaching task at their own comfortable pace. Detailed task design was presented

in Section 3.1.2.

4.2.3 Apparatus and measurements

Compared to the previous experiment, the same apparatus and measurements

were used in this experiment (see Section 3.1.3 and Figure 3.1). The EMU was

used to generate the ISC force field while the subject’s hand was attached to

the handle of the device. TrakSTAR 3D Guidance Magnetic Sensors was used to

measure the subjects’ shoulder (S), wrist (W ) and elbow (E) positions, which was

subsequently used to calculate online the swivel angle as shown in Equation 3.1

and Equation 3.2.

4.2.4 Experimental protocol for variant of ISC

Identical to the previous experiment, the protocol was divided into three successive

phases. The difference is that the force field applied in the Intervention was P-ISC
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as shown in Table 4.1.

1. PRE phase, where subjects performed 25 reaching tasks while strapped to

the robot. In this phase, the robot is set in transparent mode, compensating

only for its own weight and friction in both vertical and planar directions,

in order to minimise its influence on the subject. The movements recorded

in this phase are used to obtain a reference for each subject.

2. INTervention phase, where subjects remained strapped to the robot and per-

formed 100 reaching tasks. The robot applied the “P-ISC mode” in addition

to its own gravity and friction compensation.

3. POST phase, identical to the PRE phase, where subjects performed 25 reach-

ing tasks with the robot set in transparent mode. This phase was included

to measure the washout effect.

Same as the previous experiment, subjects performed a total of 200 movements

and were asked to take at least a thirty-second break every 20 iterations and could

request additional rest at any time. The experiment was run in an implicit manner

and the subjects were not given any instruction about the different phases of the

experiment and were blind to the objective of the experiment and to the effect of

the robotic force field.

The same questionnaire was taken by all subjects in this experiment at the end of

the experiments to test their awareness of the effect of the robotic device.

Table 4.1: Experimental protocol for variant of ISC

Phase Free PRE INT POST Free
Force field N.A. Transparent P-ISC Transparent N.A.
Iterations 1-25 26-50 51-150 151-175 176-200
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4.3 Results

To compare the outcome from two experiments and evaluate the contributions of

the progressivity in this experiment, part of the results from previous experiment

(noted as “CG Group”) are also included. Results are presented in four parts,

respectively presenting the subject awareness of the robotic effect, the within-

group comparisons on the intervention effect and the after effect as measured

by the change in swivel angle, the between-group comparisons on the difference

between the two groups in altering subject’s movement, and the change in hand

velocity. Consistent data analysis of two variations of the ISC were performed in

this and previous experiment.

4.3.1 Questionnaire results

According to answers to the questionnaire, all of the subjects in PG group felt a

force field was applied by the device (Q1). Only one subject (1/10) in PG group

suspected that the device influenced them in a particular way but was incapable

of describing the actual effect (Q2). This subject also pointed out that he felt he

changed his movement to “a parabolic trajectory” during the experiment, whereas

all the other subjects did not feel that they changed their movement patterns (Q3).

4.3.2 Intervention outcome and after effect

The swivel angle at the end pose (θ (dmax)) was used to represent the swivel an-

gle of the movement in the analysis. And the swivel angle change was recorded

as ∆θ (dmax) as introduced in Section 3.2.2. For each individuals, this average

measure is thus reported:

• during the PRE phase, used as a baseline;

• during the comparative stage of INT phase (iterations i = [101− 135], in

which both groups share the same shaping goal without effect of bi), to
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investigate the immediate effect of the ISC compared with baseline for each

individuals;

• during the POST phase, to investigate the after effect of the ISC compared

with baseline for each individuals.

The results are thus reported on intervention effect by performing within-group

comparisons on the mean swivel angles, θ (dmax), of each individuals in PRE and

comparative stage in INT phases using a Wilcoxon Signed-Rank Test for each

group.

Identically, the after effect is reported by by performing within-group comparisons

on the mean swivel angles, θ (dmax), of each individuals in PRE and POST phases

using a Wilcoxon Signed-Rank Test for each group.

The changes of mean swivel angle during different phases for each individual sub-

ject in PG Group are shown in Figure 4.2.

The evolution of ∆θ (dmax) for each group is shown in Figure 4.3. The intervention

effect is significant for both groups (p = 0.002), and the mean changes were 4.9◦

and 6.3◦ in comparative stage of INT phase for CG Group and PG Group respec-

tively, as reported in Table 4.2. Additionally, a similar analysis performed not at

end point, but midway through the movement (at d = dmax/2), shows a swivel

angle increase of 1.9◦ and 2.1◦ for CG and PG groups respectively, confirming that

the same trend exist through the reaching movement.

As the force field is progressively removed (from iteration 135), no after effect is

observed, with a fast return to the baseline value. No significant differences are

Table 4.2: Within-group comparisons for intervention effect and after effect

Group CG (N=10) PG (N=10)
Phases PRE-INT PRE-POST PRE-INT PRE-POST

Difference +4.9◦ −0.3◦ +6.3◦ 0.9◦

p value 0.002 0.6953 0.002 0.7695
Test Statistic (W) 0 23 0 24
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Figure 4.2: Mean swivel angle measure for each individual subject in the PG
Group in the 3 phases of the experiment.

found between PRE and POST phases (p = 0.70 and p = 0.77 respectively for CG

and PG Groups), with mean differences of −0.3◦ and 0.9◦, as reported in Table 4.2.

Figure 3.7 and 4.2 show that this behaviour is relatively consistent among subjects,

with only a few individuals not returning to their baseline behaviour (Subjects

#9, #14, #15 and #18). Additionally, it can be seen on Figure 4.3 that subjects

already started to return towards their baseline movement pattern during the

phasing out of the force-field (iterations 135 to 150).

4.3.3 Contribution of the constant and progressive goal

To compare the two variations of the ISC, the means of ∆θ (dmax) of each individual

during the comparative stage of INT phase (iterations i = [101− 135]) were further

compared between groups using the Wilcoxon Rank-Sum tests.
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Figure 4.3: Swivel angle evolution for all subjects in each group (sliding av-
erage with window width of 5 samples). The blue and red solid line show the
mean outcome in each iteration for all subjects in CG Group and PG Group
respectively. Shaded areas represent the interquartile range after rejecting out-
liers (three-sigma rule). Dotted lines shows the different phases: (a): PRE,
(b):first part of INT with progressive goal in PG, (c): comparative stage of INT
with constant goal in both CG and PG Group, (d): progressive removal of force

field, and (e): POST phase.

Figure 4.4 shows the change of swivel angle in the two groups during the com-

parative stage of INT phase compared to baseline (PRE). The difference between

the two groups is small, at 1.4◦ and found to be not statistically significant (see

Table 4.3).

Table 4.3: Between-group comparisons for intervention effect and after effect

Phases INT POST
Difference 1.4◦ 1.2◦

p value 0.2730 0.9698
Test Statistic (W) 90 104
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Figure 4.4: Swivel angle changes compared to baseline for each group. The
box plot shows swivel angle changes ∆θ (dmax) in the comparative stage of INT
for CG Group and PG Group respectively. The bottom and top edges of the
blue box indicate the 25th and 75th percentiles respectively while the red +
shows the outliers. Inside the blue box, the red solid line shows the median and

the red star shows the mean value of the data set. #: p ≥ 0.0025.

4.3.4 Hand velocity

Identical to previous experiment, the hand velocity changing ratio, φ (see Equa-

tion 3.5), was introduced to analyze the hand velocity changes. As for the swivel

angle, the effect of the intervention on the hand velocity was assessed by compar-

ing the INT and POST phases for each group, and between-group comparisons

were performed to assess the effect difference of the two variations of the ISC.

Within-group comparisons were tested using the Wilcoxon Signed-Rank tests,

while Between-group comparisons were tested using the Wilcoxon Rank-Sum tests.

The velocity change ratio φ (defined in Equation 3.5) for each group is shown on

Figure 4.5. A reduction of the average hand velocity of 20% and 16% was observed
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Figure 4.5: Velocity changes ratio for each group. The box plot shows velocity
changes ratio φ in the comparative stage of INT and POST for CG Group and
PG Group respectively. The bottom and top edges of the blue box indicate the
25th and 75th percentiles respectively while the red + shows the outliers. Inside
the blue box, the red solid line shows the median and the red star shows the

mean value of the data set. #: p ≥ 0.05.

for the CG Group and the PG Group respectively in both the comparative stage

of INT and POST phases. The difference between the two groups, 4%, was shown

to be not significant (W = 95, p = 0.4727) as shown in Table 4.5. Similar results

were observed for the within-group comparisons, and the difference was found to

be not significant (see Table 4.4).

Table 4.4: Within-group comparisons for velocity changes in INT-POST

Group CG (N=10) PG (N=10)
Phase INT-POST

Difference −0.3% −0.4%
p value 0.695 0.922

Test Statistic (W) 23 26
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Table 4.5: Between-Group comparisons for velocity change in PRE-INT and
PRE-POST

Phases PRE-INT PRE-POST
Difference 4.5% 4.6%

p value 0.473 0.473
Test Statistic (W) 95 95

4.4 Discussion

4.4.1 Contribution of the progressive goal

Similar results were observed in PG Group compared to CG Group. A significant

change in movement pattern was observed in both groups per their swivel angle in

the comparative stage of INT phase (4.9◦ and 6.3◦ for the CG and PG respectively)

and no after effect can be observed in either group. This result confirmed the

possibility that motor behaviour can be adapted with the implementation of force

field solely based on an artificially designed optimum.

In the specific case of our approach only relying on an artificial change of the

motor cost, without any corresponding kinematic error, it was expected that this

progressivity would assist the subject exploration of the cost space by making

the minimal cost point more accessible at every step by ideally falling within the

subject’s natural variability.

The progressive goal approach evaluated here is shown to be slightly more effective

in this context than its equivalent with a constant goal. The difference in outcome

is of 1.4◦ which corresponds to an improvement of 29%. Similarly a difference in

the effect can be observed from the swivel angle evolution over the iterations (see

Figure 4.3). It can be seen in the comparative stage of INT phase that the PG

Group has higher mean change in all iterations. However, this difference is not

statistically significant and no concrete conclusion can be drawn on the advantage

of this progressivity.
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The progressivity defined in this experiment was a linearly changing goal. It can

be seen that the shaping outcomes varied from person to person. This suggests

that adding personalised force-field could potentially contribute to enhance the

contribution of this progressivity. For example, slower or pausing the movement

of the goal when trainees are not able to achieve it. In clinical application, this

personalisation is common, as clinicians usually offer different treatments to dif-

ferent patients in different stages. However, if personalised feedback is integrated

into ISC, it is important to ensure that this less challenging goal does not induce

slacking which may reduce human effort during rehabilitation training and cause

significant reduction in the outcome of the shaping [86].

4.4.2 Subject awareness

The overall results from questionnaire are similar to the previous experiment. As

all participants could not describe the actual effect after experiment, the training

can be seen as truly implicit.

A special case among them is Subject 14 who pointed out that a change of his

movement pattern occurred during the experiment, and whose shaping outcome is

one of the largest observed across the subjects (9.15◦, see Figure 4.2). It is to note

that this subject has significant larger variations of their swivel angle than other

subject during the comparative stage of the INT phase. This variation shows a

larger exploration of the cost space and potentially demonstrates that the subject

noticed the force field and explicitly changed their movement pattern during the

experiment. Interestingly, even though the subject was not able to describe the

actual intervention effect, they still found the way to reduce the movement cost

by complying to the desired movement pattern.
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4.5 Summary

This study confirmed the feasibility of shaping human movement patterns indi-

rectly and implicitly by relying on the motor cost change only. However, the

contribution of progressivity is not significant in the current experimental setup.

In the current setup, the progressivity is the same static trend for all subjects, but

in actual clinical therapy, the progressivity is usually personalized based on each

subject. A guessing is thus proposed that progressively moving the goal based on

individual learning outcome could be a better solution. This personalized moving

goal could potentially better interpret the principle on neuroplasticity. As the

same task was chosen in this experiment, retention is still neither expected nor

observed. To better understanding the observations from these experiments, a

motor cost analysis is performed and presented in the next chapter.
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Motor cost analysis

The previous chapters have confirmed that motor adaptation can be induced with

an indirect and implicit method which relies on the motor cost change. In this

chapter, a more specific analysis of how the motor cost changes during the ex-

periment is presented. This analysis aims to explain the observations from the

experiment and also validate the conjecture of the relationship among swivel an-

gle, velocity, and motor cost mentioned in previous chapters.

As introduced in Section 2.1, different models have been proposed to estimate the

motor cost, based on different formulations of the cost function. Among three

types of cost functions indicated in Section 2.1, the cost function based on kine-

matic parameters (i.e. jerk of the hand movement [24] or swivel angle [25]) has

its advantages due to its simplicity of the observations, but it cannot explain all

scenarios in human’s daily life. For example, putting a bottle with and without

water onto a table can lead to a different motor cost. This example shows that

the cost function for dynamic systems can be parameterized by some parameters

to characterize the dynamics at either mechanical level [26–28] or neuorological

level [29, 30, 34] (see detailed descriptions in Section 2.1). These cost functions

can provide more detailed information compared with cost function based on kine-

matics only.

61
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As there is no neurological signal measured in the experiment, the cost function

based on the parameters of mechanical dynamics parameters is chosen. In this

chapter, the human arm model will be simplified to a two-link mechanism and to

illustrate the motor cost compromise in this experiment. The motor cost will be

estimated based on the Torque-Time-Integral (TTI), which can reflect the energy

expenditure during the movement [87]. Although this model cannot precisely

describe the real motor cost change during the experiment, it can still contribute

to understanding the strategies that subjects made in the experiment.

5.1 Computational model and cost function

This subsection will discuss the model and the cost function that are employed in

building the computational model.

5.1.1 Arm kinematics model

To analyze the motor cost change, the human arm was simplified as a two-link

mechanism with a ball joint (or equivalent three revolute joints) for the shoulder

and a revolute joint for the elbow, with two point masses m1 and m2 representing

the upper arm and forearm respectively, as shown in Figure 5.1. The length of the

links are set to l1 and l2.

Labelling the four joints with q1, q2, q3 and q4, among which q1 represents the

shoulder internal/external rotation, q2 represents the shoulder extension/flexion,

q3 represents the shoulder abduction/adduction, and q4 represents the elbow ex-

tension/flexion. Through the forward kinematics model, the relationship between

the joint space and the task space can be represented as
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Figure 5.1: The arm model used for the cost simulation with four revolute
joints and two mass centered on the two links.

xhand =l1(cos q2 cos q1 + sin q2 sin q1 sin q1)

+ l2(cos q4(cos q2 cos q1 + sin q2 sin q1 sin q1)

− sin q4(cos q2 sin q1 − cos q1 sin q2 sin q1)).

(5.1)

yhand =l2(cos q1 cos q1 sin q4 + cos q1 cos q4 sin q1)

+ l1 cos q1 sin q1.
(5.2)

zhand =− l1(cos q1 sin q2 − cos q2 sin q1 sin q1)

− l2(cos q4(cos q1 sin q2 − cos q2 sin q1 sin q1)

− sin q4(sin q2 sin q1 + cos q2 cos q1 sin q1)).

(5.3)

As shown in Equation 5.1 to Equation 5.3, with the known hand position

(xhand, yhand, zhand), there are infinite sets of qn = [q1 q2 q3 q4]
T ∈ R4 value can be

chosen, which reflects the redundancy of this model, and this redundancy can be
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parametrised by the swivel angle θ. The relationship between swivel angle θ and

joint angles qn is

θ = arcsin (cos q1 cos q3 + sin q1 sin q2 sin q3). (5.4)

Thus, for a known swivel angle as well as the hand position, qn in joint space can

be uniquely defined, thus, the redundancy is resolved.

With the equality constraint introduced in Equation 5.4, the measured task space

movement can be uniquely mapped to the joint space to reflect joint changes.

Consequently, the cost can be estimated based on the torque changes at each

joint.

5.1.2 Arm dynamics model and cost estimation

The motor cost or energy consumption is estimated by using the Torque-Time

Integral (TTI) [87], assuming that each joint has an equal contribution. The two

main costs included in this analysis were the cost induced by the force field and

the natural cost induced by gravity and kinetics.

The natural cost of the reaching task, Ln can thus be estimated as integral of the

sum of the kinetic and gravity torques over time t:

Ln =

∫ T

0

|τgravity(t)|+ |τkinetics(t)| dt , (5.5)

where |◦| denotes absolute value. If the measurements are sampled, the integral

becomes a summation.

The total cost during the intervention phase, Li, as the integral of the sum of the

natural cost Ln and the cost induced by the force field:

Li =

∫ T

0

|τgravity(t)|+ |τkinetics(t)|+ |τforce−field(t)| dt. (5.6)
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The gravity torque of the two links is computed as follows:

τgravity(t) =
2∑

n=1

−JCi
(t)T ·mig · v, (5.7)

where JCi
(t) is the Jacobian matrice to the respective centers of mass and v is the

vertical vector [0 0 1]T. It is the torque due to gravity on both links of mass m1

and m2.

The kinetic torque of the two links is computed as follows:

τkinetics(t) =
2∑

n=1

(
mi · JvCi

(t)T · JvCi
(t) + JωCi

(t)T · ICi
· JωCi

(t)
)
· q̈, (5.8)

where JvCi
(t) and JωCi

(t) are the translational and rotational Jacobian matrices

of the centers of mass respectively. The notion ICi
is the inertia matrices of the

two segments.

The torque induced by the force field is:

τforce−field(t) = JH(t)T · fvis(t). (5.9)

where JH(t) denotes the Jacobians to the hand point (H) and fvis(t) is the viscous

force field generated by the robot.

5.2 Motor cost simulation

Based on this kinematic model and the motor cost function, a simulation envi-

ronment can be developed. With this simulation, it is expected to illustrate the

relationships among the swivel angle, hand velocity and motor cost.
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5.2.1 Simulated trajectories

The simulated trajectory was applied in the model to illustrate the movement

pattern change associated with the corresponding cost change. The parameters

and trajectories selected in this simulation correspond to the average of the mea-

surement from the twenty subjects in the experiment. The linkage lengths are

the average of the twenty subjects; namely, the lengths of the linkages are set to

l1 = l2 = 300mm. The mass of the upper arm and forearm were set to m1 = 2.3kg

and m2 = 1.7kg based on the average of the estimated segment weight using

their body weight [88]. The starting and final points of the hand movements were

[305,−60,−400]mm and [500, 110, 0]mm respectively based on the average trajec-

tories of the experimental data. In this coordinate system, the positive x, positive

y and positive z directions represent the forward, leftward and upward directions

respectively.

The average velocity was set to 400mm.s−1. The original swivel angle trajectory

θo was define with θo(0) = 15◦ (at the starting pose) and θo(dmax) = 25◦ (at the

end pose) based on the average measurement in the experiment. The force field

desired swivel angle was thus set to θd(dmax) = 35◦ (at the end pose), and the

force field were calculated based on Equation 3.4.

5.2.2 Simulation results

The total most costs, Li, of the reaching movements estimated for variations of the

swivel angle and hand movement speed are shown in Figure 5.2. The value of 0◦

swivel angle change and speed of 0.40m.s−1 corresponds to the average movement

in PRE phase. The speed ranges are ±10% and ±20% of the average speed, while

10◦ swivel angle change is the desired pattern. It can be clearly seen that increasing

the swivel angle could reduce the total motor cost during the INT phase.

Besides the total motor cost, the estimated natural motor costs, Ln, for different

speed and swivel angle changes are shown in Figure 5.3. Same as the total motor
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Figure 5.2: Simulated motor costs with external force-field calculated as the
torque-time integral for different swivel angles and hand movement speeds.

cost, the speed ranges are covered ±10% and ±20% of the average speed, but an

exaggerated range of swivel angle change from 0◦ to 40◦ is used to make the change

of natural cost due to gravity more visible.

5.2.3 Gravity effect

Due to the nature of the task, the natural motor cost is dominated by the gravi-

tational load, which is static by essence: a higher swivel angle will lead to a larger

load on shoulder muscles for a given posture. But compared to the cost change

induced by the force field when changing the swivel angle, the cost change induced

by the gravitational load is weaker (it is noted that the figure shows an exagger-

ated 40◦ swivel change to present this cost change). The force-field counteracts the

variations of the natural cost regarding the variation of the swivel angle as shown
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Figure 5.3: Simulated motor costs without external force-field calculated as
the torque-time integral for different swivel angles and hand movement speeds.

in Figure 5.2. The force-field dominating the overall reaching cost may thus ex-

plain why subjects adapt their movement to go towards a new optimal movement

cost with a higher swivel angle.

In addition, as illustrated by Figure 5.3, the natural cost, dominated by the gravity,

means that a slower movement will require additional energy, as this gravitational

load will have to be sustained for a longer time, but this effect of speed is clearly

negligible compared to the cost of the force-field (Figure 5.2).
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5.3 Motor cost analysis based on experiment data

5.3.1 Data processing

Based on the experiment results, the movement pattern changes during the inter-

vention phase of 20 individuals in two experiments are shown in Figure 5.4. There

was one subject in CG group with insignificant change (CG-NS), and the other

nine subjects in CG group were with significant change (CG-S). All subjects in

PG group were with significant change (PG-S). Thus, all subjects were catego-

rized into three groups as shown in Figure 5.4, where the green, blue, red boxes

are corresponding to CG-NS, CG-S, and PG-S groups. To analyze the motor cost

changes along with the movement pattern change, experiment data from three

C
G
 G
roup

PG
 G
roup

Figure 5.4: Individual intervention outcome. The box plot shows individual
intervention outcomes in the comparative stage of INT phase (iterations 101 to
135) compared with the PRE phase. Subjects 1 to 10 were in CG group and
Subjects 11 to 20 were in PG group. The green, blue, red boxes are correspond-

ing to CG-NS, CG-S, and PG-S groups
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subjects who have the closest ∆θ compared to the average of the group were cho-

sen from three groups, and the corresponding body parameter measurement and

intervention outcome are shown in Table 5.1. In Table 5.1, l1 and l2 are measured

limb length between joints (shoulder to elbow and elbow to wrist respectively).

m1 and m2 are estimated limb mass based on the percentage of subjects body

weight [89]. And ∆θ(◦) and φ are from measurement from experiment.

Table 5.1: Body parameter and intervention outcome of three individuals from
three different groups

Group Subject l1 (m) l2 (m) m1 (kg) m2 (kg) ∆θ(◦) φ
CG-NS 1 0.35 0.33 3.0 2.8 -0.1 -0.09
CG-S 6 0.36 0.29 3.5 3.2 4.4 +0.01
PG-S 14 0.37 0.35 5.1 4.6 5.5 +0.07

5.3.2 Results

The relationship between estimated motor cost and the swivel angle change is

presented in Figure 5.5, and the results for three subjects from CG-NS, CG-S,

PG-S group are presented in sub-figures (a), (b), and (c) respectively. The motor

cost was processed through a sliding-window filter with window size equals ten.

The solid blue and red lines illustrate the total motor cost and natural motor cost

at corresponding swivel angle changes. With the increase of swivel angle changes,

the general trend of the total motor cost is decreased (by 48% in average for three

groups), while the natural motor cost has a change by 11% difference in average.

Figure 5.5: Estimated motor cost over swivel angle change for (a) CG-NS (b)
CG-S (c) PG-S. The solid blue and red lines illustrate the total motor cost and

natural motor cost at corresponding swivel angle changes.
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Similarly, the relationship between motor cost and hand velocity was shown in

Figure 5.6, and the results for three subjects from CG-NS, CG-S, PG-S group are

presented in sub-figures (a), (b), and (c) respectively. It can be seen that with the

increase of the hand speed, both the total motor cost and natural cost decreased

for all three subjects (40% in average for Li, and 19% in average for Ln).

Figure 5.6: Estimated motor cost over hand velocity for (a) CG-NS (b) CG-S
(c) PG-S.The solid blue and red lines illustrate the total motor cost and natural

motor cost at corresponding hand velocity.

5.3.3 Discussion

5.3.3.1 The reason of swivel angle change

In ISC, the goal was to influence the movement pattern through the motor cost

change, and thus, the force field was designed in the function of swivel angle. From

the experiment result, the total motor cost Li is showed to be smaller when the

swivel angle increased, and it can be clearly seen that the motor cost induced

by the robotic device is dominating the overall cost change. The cost reduction

contributed by the robotic device takes more than 77% of total change, and this

cost reduction could potentially drive humans to a new optimum, thus explaining

the rationale behind the movement pattern change. These results are in agreement

with the simulation results as well as the force field design and the hypothesis on

the motor cost change.

However, the observation on the change of natural motor cost Ln is different from

both the hypothesis and simulation results. The hypothesis was that the increase

of the swivel angle leads to a higher motor cost as the exaggerated pattern requires
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a higher load at the shoulder to produce more work to compensate for the gravity.

The simulation results validated this hypothesis. However, in the experiment

results, the natural cost decreased when the swivel angle increased, although the

change is small (around 10%). It is noted that the simulation results isolate the

influence from the hand velocity changes when presenting the relationship between

the natural motor cost and swivel angle, but the experiment results do not. So

this small perturbation could potentially come from the influence of hand velocity

rather than the swivel angle. Although the trend is different between simulation

and experiment results, both agree that the swivel angle influences the natural

motor cost weakly.

It can still be seen that the average swivel angle “reached” by both groups intro-

duced in the real experiment is below the shaping goal at which the force-field

component in the cost function would become zero, suggesting that subjects do

not fully reach an optimal behaviour, or that some elements of the cost are not

captured in this simulation.

5.3.3.2 Effect of hand velocity

Besides the swivel angle change, the motor cost was also influenced by the hand

velocity. The experiment results show that the increase of hand velocity leads to

reductions in both natural motor cost and total motor cost. These results are in

agreement with the simulation results. The analysis shows that total motor cost

has a 40% reduction in average, and the natural motor cost contributes half of

this change (19%), while the rest half is contributed by the cost induced by the

robotic device.

There exists a cost compromise between the motor cost and hand velocity. Due

to the nature of the viscous force field, the higher velocity induces a higher force

field and leads to a higher motor cost, but in contrast, it reduces the duration to

complete the task and results in a lower accumulated motor cost in completing

the task.
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An interesting observation in the experiment is that subjects in both groups re-

duced their velocity magnitude, of 16% and 20% respectively for the CG and PG

groups in the majority of iterations (see Figure 4.5). A possible explanation for

this is that the subjects tried to limit the instantaneous force field effect by re-

ducing their speed, independently of the overall movement cost. Indeed although

the cost due to the force-field is itself unaffected by the movement time, the in-

stantaneous intensity of the force is. The anatomic structure could be another

factor in this cost analysis. For example, a lighter arm with weaker muscle could

be sensitive to the instantaneous force field but cost less due to the gravity. It

may result in a slower movement to accept an accumulated cost against a high

instantaneous cost. Due to there being no muscle analysis in this experiment, this

is an interesting point to be investigated in the future study.

5.4 Summary

This cost analysis explained the observation in the experiment and proved the

effectiveness of the force field (ISC) introduced in the experiment. Both the ex-

periment results and simulated results illustrate the fact that in this experiment,

the cost involved by the force field was clearly acting in the opposite direction of

the gravitational load and clearly dominating it. This model helps to interpret the

experimental results. However, this model still needs further improvement as it

does not take into account the actual muscle distribution and assumed each joint

has an equal contribution in the total cost, which cannot be confirmed in most

scenarios. A detailed model could potentially provide a more accurate estima-

tion of motor cost change, and as such, the force field could be further improved

quantitatively based on the motor cost estimation.
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Conclusion

This thesis aims to investigate the feasibility of shaping human’s movement pat-

tern using a simpler device. Three topics were investigated in this thesis: a) the

feasibility of shaping healthy subjects’ movement patterns using a physical inter-

vention produced by robotics device in an indirect and implicit manner; b) the

contribution of a progressively changing goal in this implicit motor adaptation,

assuming that this adaptation may be further promoted through subtle prompts

to explore the cost space; c) a cost analysis based on the upper limb kinematics

and dynamics model to validate the relationship between observations and motor

cost.

6.1 Contributions

First, the major contribution of this thesis is confirming the feasibility of inducing

human motor adaptation solely relying on motor cost with the absence of kine-

matics error. The experiment results suggested that influencing human motor cost

through applying a force field in null space could favor an adaptation in redundant

space towards the desired pattern. This finding empowers simple robotic devices

such as manipulandum devices to be used in movement pattern shaping for highly

redundant tasks.

74
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Secondly, leveraging the principle of neuroplasticity, a hypothesis that a progres-

sive goal could improve the shaping outcome was proposed and tested by deploying

the progressivity into the force field used in the previous experiment. The results

confirmed the feasibility of inducing human movement pattern change with an

indirect force field. But, surprisingly, the results suggested that the progressivity

used in this experiment didn’t drive a significant improvement in the outcome.

Finally, a motor cost analysis was performed to explore the relationship between

the observations (swivel angle and hand velocity) and motor cost. The results

showed that a higher swivel angle could lead to a lower total motor cost which

proved the rationality of the design of the force field and explained the side effect

on hand velocity change observed in the experiment.

6.2 Limitations and future work

Movement pattern shaping shows high demand in different fields. Especially in

neurorehabilitation, the impairment in motor function brings significant limita-

tions on stroke survivors’ quality of life. Under the general trend of aging in most

developed countries, the demand for neurorehabilitation is expected to be even

higher in the next few decades, thus making the studies on movement pattern

shaping critical. As shown in the results, this shaping strategy could shape hu-

man movement patterns by influencing the human motor cost. Regrettably, no

after effect and retention were observed in this study, suggesting that the subjects

quickly came back to their original movement pattern when the force field was

removed. The chosen task and problem in this study aim to be relevant to motor

neuro-rehabilitation of the upper limb, where pathological synergies retraining and

movement correction play an important role towards functional recovery. But in

this study, after effect was not expected to happen, as the desired exaggerated new

movement pattern leads to a higher cost and subjects do not gain any benefit from

this new movement pattern when they are moving without the artificial force field.

If the newly learned movement pattern is beneficial to the subjects, the after effect
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and retention are expected to happen as in neurorehabilitation training. Also, in

the most of similar motor learning studies, the force field is suddenly removed

to better observe the after effect which usually lasts for a few iterations. In this

experiment, to keep the subject unaware of the force field, the intervention was re-

moved progressively which led to a lost opportunity to observe a clean after effect.

The current study is still under laboratory conditions and tested with healthy sub-

jects. To further explore the effectiveness of this strategy in neurorehabilitation

training, a clinical evaluation of the feasibility for individuals with neurological

injury is required.

The extensibility of this shaping strategy is an exciting research topic in the fu-

ture study. Due to the high redundancy of the human’s muscle-skeletal system,

human can have different muscle activation patterns at the same kinematic state.

In this case, observation at the muscle level can provide more information directly

and accurately compared to observation at the joint level. Besides, in neuroreha-

bilitation, the reactivation of the primary brain lesion area is not expected, and

the neurorehabilitation therapy of post-stroke mainly aims to generate activation

in alternative brain areas not normally observed in non-disabled individuals [79].

While the muscles are activated by the neural system directly, it is believed that

shaping specific muscle activation can be beneficial to encourage neural rewiring

and function relearning in the neuro-rehab process. In addition, due to many ev-

eryday tasks are intrinsically unstable and so different muscle activation for the

same posture/movement (i.e. keeping a screwdriver in the slot of a screw is un-

stable [22]), stability may be dependent on the control of mechanical impedance

in the human arm. To empower patients’ abilities to perform these common tasks

in their daily lives, the joint level shaping is insufficient. So the feasibility of in-

ducing the muscle activation pattern change using physical intervention produced

by robotic devices become an exciting research topic in the future study.

In addition, the movement pattern was characterised by the swivel angle in this

study, but the results suggested that movement time and speed are also impor-

tant parameters in the movement pattern and motor cost. The simulation results



Chapter 6: Conclusion 77

demonstrated the potential of shaping the movement speed in an indirect and im-

plicit manner. Considering performing the same movement but at different speeds

could lead to different results in many sports (i.e. swinging a golf club or throwing

a ball), it has broad applications in sports training. In this case, a different cost,

the performance, could be introduced. It will be an interesting topic to investigate

the compromise between energy expenditure and performance, which has a good

potential to provide a minimum-motor-cost training process for athletes.

Besides this, the progressivity in the second experiment was set to a constant

linear goal without considering the differences among subjects. Thus, the person-

alization of this force field is also worth investigating. From the observation of the

experiment, the shaping outcome varies from person to person largely. Given that

different persons have different muscle content and learning steps, the outcome

could be improved if the force field could adapt to different subjects based on the

iterative performance data (or additional information). The tuning gain of the

magnitude of the force field was set as a constant number in this experiment, and

it resulted in the same force feedback for different subjects if they performed the

same kinematics trajectory. This parameter has the potential to be an iterative

learnable parameter contributing to personalization.

The last point to be further improved in future is a detailed human motor cost

analysis with more observations and a detailed model. The current model cannot

precisely describe the real motor cost change during the experiment, as it did not

take the muscle distribution into account. And the assumptions on equivalent

cost contribution from torque at each joint could not be realistic in most cases.

In this case, a better model and a detailed simulation could contribute to a better

understanding of the relationship between swivel angle change and motor cost

change, thus contributing to the design of an intervention to achieve a better

outcome.
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